No Arabic abstract
We present magnetoresistivity measurements on the heavy-fermion superconductor UTe$_{2}$ in pulsed magnetic fields $mu_0H$ up to 68~T and temperatures $T$ from 1.4 to 80~K. Magnetic fields applied along the three crystallographic directions $mathbf{a}$ (easy magnetic axis), $mathbf{b}$, and $mathbf{c}$ (hard magnetic axes), are found to induce different phenomena - depending on the field direction - beyond the low-field suppression of the superconducting state. For $mathbf{H}parallelmathbf{a}$, a broad anomaly in the resistivity is observed at $mu_0H^*simeq10$~T and $T = 1.4$~K. For $mathbf{H}parallelmathbf{c}$, no magnetic transition nor crossover are observed. For $mathbf{H}parallelmathbf{b}$, a sharp first-order-like step in the resistivity indicates a metamagnetic transition at the field $mu_0H_m simeq 35$~T. When the temperature is raised signature of first-order metamagnetism is observed up to a critical endpoint at $T_{CEP}simeq7$~K. At higher temperatures a crossover persists up to 28~K, i.e., below the temperature $T_chi^{max} = 35$~K where the magnetic susceptibility is maximal. A sharp maximum in the Fermi-liquid quadratic coefficient $A$ of the low-temperature resistivity is found at $H_m$. It indicates an enhanced effective mass associated with critical magnetic fluctuations, possibly coupled with a Fermi surface instability. Similarly to the URhGe case, we show that UTe$_{2}$ is a candidate for field-induced reentrant superconductivity in the proximity of $H_m$.
Inelastic-neutron-scattering measurements were performed on a single crystal of the heavy-fermion paramagnet UTe$_2$ above its superconducting temperature. We confirm the presence of antiferromagnetic fluctuations with the incommensurate wavevector $mathbf{k}_1=(0,0.57,0)$. A quasielastic signal is found, whose momentum-transfer dependence is compatible with fluctuations of magnetic moments $muparallelmathbf{a}$, with a sine-wave modulation of wavevector $mathbf{k}_1$ and in-phase moments on the nearest U atoms. Low dimensionality of the magnetic fluctuations, consequence of the ladder structure, is indicated by weak correlations along the direction $mathbf{c}$. These fluctuations saturate below the temperature $T_1^*simeq15$~K, in possible relation with anomalies observed in thermodynamic, electrical-transport and nuclear-magnetic-resonance measurements. The absence or weakness of ferromagnetic fluctuations, in our data collected at temperatures down to 2.1 K and energy transfers from 0.6 to 7.5 meV, is emphasized. These results constitute constraints for models of magnetically-mediated superconductivity in UTe$_2$.
We investigate the spin dynamics in the superconducting phase of UTe$_{2}$ by triple-axis inelastic neutron scattering on a single crystal sample. At the wave-vector $bf{k_1}$=(0, 0.57, 0), where the normal state antiferromagnetic correlations are peaked, a modification of the excitation spectrum is evidenced, on crossing the superconducting transition, with a reduction of the relaxation rate together with the development of an inelastic peak at $Omega$ $approx$ 1 meV. The low dimensional nature and the the $a$-axis polarization of the fluctuations, that characterise the normal state, are essentially maintained below $T_{sc}$. The high ratio $Omega/k_{B}T_{sc}$ $approx$ 7.2 contrasts with the most common behaviour in heavy fermion superconductors.
We review our recent studies on ferromagnetic superconductors, UGe2, URhGe and UCoGe, where the spin-triplet state with the so-called equal spin pairing is realized. We focus on experimental results of URhGe and UCoGe in which the superconductivity occurs already at ambient pressure. The huge upper critical field Hc2 on UCoGe for the field along the hard magnetization axis (b-axis) is confirmed by the AC susceptibility measurements by the fine tuning of field angle. Contrary to the huge Hc2 along the hard-magnetization axis, Hc2 along the easy-magnetization axis (c-axis) is relatively small in value. However, the initial slope of Hc2, namely dHc2/dT (H -> 0) both in UCoGe and in URhGe indicates the large value, which can be explained by the magnetic domain effect detected in the magnetization measurements. The specific heat measurements using a high quality single crystal of UCoGe demonstrate the bulk superconductivity, which is extended under magnetic field for the field along c-axis.
Spin-triplet superconductors are of extensive current interest because they can host topological state and Majorana ferimons important for quantum computation. The uranium based heavyfermion superconductor UTe$_2$ has been argued as a spin-triplet superconductor similar to UGe$_2$, URhGe, and UCoGe, where the superconducting phase is near (or coexists with) a ferromagnetic (FM) instability and spin-triplet electron pairing is driven by FM spin fluctuations. Here we use neutron scattering to show that although UTe$_2$ exhibits no static magnetic order down to 0.3 K, its magnetism is dominated by incommensurate spin fluctuations near antiferromagnetic (AF) ordering wave vector and extends to at least 2.6 meV. We are able to understand the dominant incommensurate spin fluctuations of UTe$_2$ in terms of its electronic structure calculated using a combined density functional and dynamic mean field theory.
We study the temperature dependence of electrical resistivity for currents directed along all crystallographic axes of the spin-triplet superconductor UTe$_{2}$. We focus particularly on an accurate determination of the resistivity along the $c$-axis ($rho_c$) by using transport geometries that allow extraction of two resistivities along with the primary axes directions. Measurement of the absolute values of resistivities in all current directions reveals a surprisingly (given the anticipated highly anisotropic bandstructure) nearly isotropic transport behavior at temperatures above Kondo coherence, with $rho_c sim rho_b sim 2rho_a$, but with a qualitatively distinct behavior at lower temperatures. The temperature dependence of $rho_c$ exhibits a Kondo-like maximum at much lower temperatures compared to that of $rho_a$ and $rho_b$, providing important insight into the underlying electronic structure necessary for building a microscopic model of UTe$_{2}$.