No Arabic abstract
Spin-triplet superconductors are of extensive current interest because they can host topological state and Majorana ferimons important for quantum computation. The uranium based heavyfermion superconductor UTe$_2$ has been argued as a spin-triplet superconductor similar to UGe$_2$, URhGe, and UCoGe, where the superconducting phase is near (or coexists with) a ferromagnetic (FM) instability and spin-triplet electron pairing is driven by FM spin fluctuations. Here we use neutron scattering to show that although UTe$_2$ exhibits no static magnetic order down to 0.3 K, its magnetism is dominated by incommensurate spin fluctuations near antiferromagnetic (AF) ordering wave vector and extends to at least 2.6 meV. We are able to understand the dominant incommensurate spin fluctuations of UTe$_2$ in terms of its electronic structure calculated using a combined density functional and dynamic mean field theory.
Superconductivity has its universal origin in the formation of bound (Cooper) pairs of electrons that can move through the lattice without resistance below the superconducting transition temperature Tc[1]. While electron Cooper pairs in most superconductors form anti-parallel spin-singlets with total spin S=0 [2,3], they can also form parallel spin-triplet Cooper pairs with S=1 and an odd parity wavefunction[4-6], analogous to the equal spin pairing state in the superfluid 3He[7]. Spin-triplet pairing is important because it can host topological states and Majorana fermions relevant for fault tolerant quantum computation[8-11]. However, spin-triplet pairing is rare and has not been unambiguously identified in any solid state systems. Since spin-triplet pairing is usually mediated by ferromagnetic (FM) spin fluctuations[4-6], uranium based heavy-fermion materials near a FM instability are considered ideal candidates for realizing spin-triplet superconductivity[12-14]. Indeed, UTe2, which has a Tc=1.6K [15,16], has been identified as a strong candidate for chiral spin-triplet topological superconductor near a FM instability[15-22], although the system also exhibits antiferromagnetic (AF) spin fluctuations[23,24]. Here we use inelastic neutron scattering (INS) to show that superconductivity in UTe2 is coupled with a sharp magnetic excitation at the Brillouin zone (BZ) boundary near AF order, analogous to the resonance seen in high-Tc copper oxide[25-27], iron-based[28,29], and heavy-fermion superconductors[30-32]. We find that the resonance in UTe2 occurs below Tc at an energy Er=7.9kBTc (kB is Boltzmanns constant) and at the expense of low-energy spin fluctuations. Since the resonance has only been found in spin-singlet superconductors near an AF instability[25-32], its discovery in UTe2 suggests that AF spin fluctuations can also induce spin-triplet pairing for superconductivity[33].
We report first-principles and strongly-correlated calculations of the newly-discovered heavy fermion superconductor UTe$_2$. Our analyses reveal three key aspects of its magnetic, electronic, and superconducting properties, that include: (1) a two-leg ladder-type structure with strong magnetic frustrations, which might explain the absence of long-range orders and the observed magnetic and transport anisotropy; (2) quasi-two-dimensional Fermi surfaces composed of two separate electron and hole cylinders with similar nesting properties as in UGe$_2$, which may potentially promote magnetic fluctuations and help to enhance the spin-triplet pairing; (3) a unitary spin-triplet pairing state of strong spin-orbit coupling at zero field, with point nodes presumably on the heavier hole Fermi surface along the $k_x$-direction, in contrast to the previous belief of non-unitary pairing. Our proposed scenario is in excellent agreement with latest thermal conductivity measurement and provides a basis for understanding the peculiar magnetic and superconducting properties of UTe$_2$.
Inelastic-neutron-scattering measurements were performed on a single crystal of the heavy-fermion paramagnet UTe$_2$ above its superconducting temperature. We confirm the presence of antiferromagnetic fluctuations with the incommensurate wavevector $mathbf{k}_1=(0,0.57,0)$. A quasielastic signal is found, whose momentum-transfer dependence is compatible with fluctuations of magnetic moments $muparallelmathbf{a}$, with a sine-wave modulation of wavevector $mathbf{k}_1$ and in-phase moments on the nearest U atoms. Low dimensionality of the magnetic fluctuations, consequence of the ladder structure, is indicated by weak correlations along the direction $mathbf{c}$. These fluctuations saturate below the temperature $T_1^*simeq15$~K, in possible relation with anomalies observed in thermodynamic, electrical-transport and nuclear-magnetic-resonance measurements. The absence or weakness of ferromagnetic fluctuations, in our data collected at temperatures down to 2.1 K and energy transfers from 0.6 to 7.5 meV, is emphasized. These results constitute constraints for models of magnetically-mediated superconductivity in UTe$_2$.
We report the magnetic susceptibility and the magnetization under pressures up to 1.7GPa above the critical pressure, Pc ~ 1.5GPa, for H // a, b, c-axes in the novel spin triplet superconductor UTe2. The anisotropic magnetic susceptibility at low pressure with the easy magnetization a-axis changes to the quasi-isotropic behavior at high pressure, revealing a rapid suppression of the susceptibility for a-axis, and a gradual increase of the susceptibility for the b-axis. At 1.7GPa above Pc, magnetic anomalies are detected at T_MO ~ 3K and T_WMO ~ 10K. The former anomaly corresponds to long-range magnetic order, most likely antiferromagnetism, while the latter shows a broad anomaly, which is probably due to the development of short range order. The unusual decrease and increase of the susceptibility below T_WMO for H // a and b-axes, respectively, indicate the complex magnetic properties at low temperatures above Pc. This is related to the interplay between multiple fluctuations dominated by antiferromagnetism, ferroamgnetism, valence and Fermi surface instabilities.
We focus on inelastic neutron scattering in $URu_2Si_2$ and argue that observed gap in the fermion spectrum naturally leads to the spin feature observed at energies $omega_{res} = 4-6 meV$ at momenta at $bQ^* = (1pm 0.4, 0,0)$. We discuss how spin features seen in $URu_2Si_2$ can indeed be thought of in terms of {em spin resonance} that develops in HO state and is {em not related} to superconducting transition at 1.5K. In our analysis we assume that the HO gap is due to a particle-hole condensate that connects nested parts of the Fermi surface with nesting vector $bf{Q}^* $. Within this approach we can predicted the behavior of the spin susceptibility at $bQ^*$ and find it to be is strikingly similar to the phenomenology of resonance peaks in high-T$_c$ and heavy fermion superconductors. The energy of the resonance peak scales with $T_{HO}$ $omega_{res} simeq 4 k_BT_{HO}$. We discuss observable consequences spin resonance will have on neutron scattering and local density of states.