Do you want to publish a course? Click here

Determining the depairing current in superconducting nanowire single-photon detectors

105   0   0.0 ( 0 )
 Added by Simone Frasca
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We estimate the depairing current of superconducting nanowire single photon detectors (SNSPDs) by studying the dependence of the nanowires kinetic inductance on their bias current. The kinetic inductance is determined by measuring the resonance frequency of resonator style nanowire coplanar waveguides both in transmission and reflection configurations. Bias current dependent shifts in the measured resonant frequency correspond to the change in the kinetic inductance, which can be compared with theoretical predictions. We demonstrate that the fast relaxation model described in the literature accurately matches our experimental data and provides a valuable tool for direct determination of the depairing current. Accurate and direct measurement of the depairing current is critical for nanowire quality analysis, as well as modeling efforts aimed at understanding the detection mechanism in SNSPDs.



rate research

Read More

We investigate the role of electrothermal feedback in the operation of superconducting nanowire single-photon detectors (SNSPDs). It is found that the desired mode of operation for SNSPDs is only achieved if this feedback is unstable, which happens naturally through the slow electrical response associated with their relatively large kinetic inductance. If this response is sped up in an effort to increase the device count rate, the electrothermal feedback becomes stable and results in an effect known as latching, where the device is locked in a resistive state and can no longer detect photons. We present a set of experiments which elucidate this effect, and a simple model which quantitatively explains the results.
77 - D. Yu. Vodolazov 2018
Using two-temperature model coupled with modified time-dependent Ginzburg-Landau equation we calculate the delay time $tau_d$ in appearance of growing normal domain in the current-biased superconducting strip after absorption of the single photon. We demonstrate that $tau_d$ depends on the place in the strip where photon is absorbed and monotonically decreases with increasing of the current. We argue, that the variation of $tau_d$ (timing jitter), connected either with position-dependent response or Fano fluctuations could be as small as the lowest relaxation time of the superconducting order parameter $sim hbar/k_BT_c$ ($T_c$ is the critical temperature of the superconductor) when the current approaches the depairing current.
90 - J.J. Renema , R. Gaudio , Q. Wang 2016
We measure the maximal distance at which two absorbed photons can jointly trigger a detection event in NbN nanowire superconducting single photon detector (SSPD) microbridges by comparing the one-photon and two-photon efficiency of bridges of different overall lengths, from 0 to 400 nm. We find a length of $23 pm 2$ nm. This value is in good agreement with to size of the quasiparticle cloud at the time of the detection event.
238 - W. J. Zhang , H. Li , L. X. You 2015
We develop single-photon detectors comprising single-mode fiber-coupled superconducting nanowires, with high system detection efficiencies at a wavelength of 940 nm. The detector comprises a 6.5-nm-thick, 110-nm-wide NbN nanowire meander fabricated onto a Si substrate with a distributed Bragg reflector for enhancing the optical absorptance. We demonstrate that, via the design of a low filling factor (1/3) and active area ({Phi} = 10 {mu}m), the system reaches a detection efficiency of ~60% with a dark count rate of 10 Hz, a recovery time <12 ns, and a timing jitter of ~50 ps.
We present the characteristics of superconducting nanowire single photon detectors (SNSPDs) fabricated from amorphous Mo0.75Ge0.25 thin-films. Fabricated devices show a saturation of the internal detection efficiency at temperatures below 1 K, with system dark count rates below 500 counts per second. Operation in a Gifford-McMahon (GM) cryocooler at 2.5 K is possible with system detection efficiencies (SDE) exceeding 20% for SNSPDs which have not been optimized for high detection efficiency.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا