Do you want to publish a course? Click here

Electrothermal feedback in superconducting nanowire single-photon detectors

242   0   0.0 ( 0 )
 Added by Andrew Kerman
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the role of electrothermal feedback in the operation of superconducting nanowire single-photon detectors (SNSPDs). It is found that the desired mode of operation for SNSPDs is only achieved if this feedback is unstable, which happens naturally through the slow electrical response associated with their relatively large kinetic inductance. If this response is sped up in an effort to increase the device count rate, the electrothermal feedback becomes stable and results in an effect known as latching, where the device is locked in a resistive state and can no longer detect photons. We present a set of experiments which elucidate this effect, and a simple model which quantitatively explains the results.



rate research

Read More

Counting rate is a key parameter of superconducting nanowire single photon detectors (SNSPD) and is determined by the current recovery time of an SNSPD after a detection event. We propose a new method to study the transient detection efficiency (DE) and pulse amplitude during the current recovery process by statistically analyzing the single photon response of an SNSPD under photon illumination with a high repetition rate. The transient DE results match well with the DEs deduced from the static current dependence of DE combined with the waveform of a single-photon detection event. This proves that the static measurement results can be used to analyze the transient current recovery process after a detection event. The results are relevant for understanding the current recovery process of SNSPDs after a detection event and for determining the counting rate of SNSPDs.
In Kinetic Inductance Detectors (KIDs) and other similar applications of superconducting microresonators, both the large and small-signal behaviour of the device may be affected by electrothermal feedback. Microwave power applied to read out the device is absorbed by and heats the superconductor quasiparticles, changing the superconductor conductivity and hence the readout power absorbed in a positive or negative feedback loop. In this work, we explore numerically the implications of an extensible theoretical model of a generic superconducting microresonator device for a typical KID, incorporating recent work on the power flow between superconductor quasiparticles and phonons. This model calculates the large-signal (changes in operating point) and small-signal behaviour of a device, allowing us to determine the effect of electrothermal feedback on device responsivity and noise characteristics under various operating conditions. We also investigate how thermally isolating the device from the bath, for example by designing the device on a membrane only connected to the bulk substrate by thin legs, affects device performance. We find that at a typical device operating point, positive electrothermal feedback reduces the effective thermal conductance from the superconductor quasiparticles to the bath, and so increases responsivity to signal (pair-breaking) power, increases noise from temperature fluctuations, and decreases the Noise Equivalent Power (NEP). Similarly, increasing the thermal isolation of the device while keeping the quasiparticle temperature constant decreases the NEP, but also decreases the device response bandwidth.
We probe the local detection efficiency in a nanowire superconducting single-photon detector along the cross-section of the wire with a spatial resolution of 10 nm. We experimentally find a strong variation in the local detection efficiency of the device. We demonstrate that this effect explains previously observed variations in NbN detector efficiency as function of device geometry.
77 - D. Yu. Vodolazov 2018
Using two-temperature model coupled with modified time-dependent Ginzburg-Landau equation we calculate the delay time $tau_d$ in appearance of growing normal domain in the current-biased superconducting strip after absorption of the single photon. We demonstrate that $tau_d$ depends on the place in the strip where photon is absorbed and monotonically decreases with increasing of the current. We argue, that the variation of $tau_d$ (timing jitter), connected either with position-dependent response or Fano fluctuations could be as small as the lowest relaxation time of the superconducting order parameter $sim hbar/k_BT_c$ ($T_c$ is the critical temperature of the superconductor) when the current approaches the depairing current.
271 - Hao Li , Sijing Chen , Lixing You 2016
Superconducting nanowire single-photon detectors (SNSPDs) at a wavelength of 532 nm were designed and fabricated aiming to satellite laser ranging (SLR) applications. The NbN SNSPDs were fabricated on one-dimensional photonic crystals with a sensitive-area diameter of 42 um. The devices were coupled with multimode fiber (phi=50um) and exhibited a maximum system detection efficiency of 75% at an extremely low dark count rate of <0.1 Hz. An SLR experiment using an SNSPD at a wavelength of 532 nm was successfully demonstrated. The results showed a depth ranging with a precision of ~8.0 mm for the target satellite LARES, which is ~3,000 km away from the ground ranging station at the Sheshan Observatory.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا