No Arabic abstract
Worker recruitment is a crucial research problem in Mobile Crowd Sensing (MCS). While previous studies rely on a specified platform with a pre-assumed large user pool, this paper leverages the influenced propagation on the social network to assist the MCS worker recruitment. We first select a subset of users on the social network as initial seeds and push MCS tasks to them. Then, influenced users who accept tasks are recruited as workers, and the ultimate goal is to maximize the coverage. Specifically, to select a near-optimal set of seeds, we propose two algorithms, named Basic-Selector and Fast-Selector, respectively. Basic-Selector adopts an iterative greedy process based on the predicted mobility, which has good performance but suffers from inefficiency concerns. To accelerate the selection, Fast-Selector is proposed, which is based on the interdependency of geographical positions among friends. Empirical studies on two real-world datasets verify that Fast-Selector achieves higher coverage than baseline methods under various settings, meanwhile, it is much more efficient than Basic-Selector while only sacrificing a slight fraction of the coverage.
Mobile sensing is an emerging technology that utilizes agent-participatory data for decision making or state estimation, including multimedia applications. This article investigates the structure of mobile sensing schemes and introduces crowdsourcing methods for mobile sensing. Inspired by social network, one can establish trust among participatory agents to leverage the wisdom of crowds for mobile sensing. A prototype of social network inspired mobile multimedia and sensing application is presented for illustrative purpose. Numerical experiments on real-world datasets show improved performance of mobile sensing via crowdsourcing. Challenges for mobile sensing with respect to Internet layers are discussed.
Understanding crowd behaviors in a large social event is crucial for event management. Passive WiFi sensing, by collecting WiFi probe requests sent from mobile devices, provides a better way to monitor crowds compared with people counters and cameras in terms of free interference, larger coverage, lower cost, and more information on peoples movement. In existing studies, however, not enough attention has been paid to the thorough analysis and mining of collected data. Especially, the power of machine learning has not been fully exploited. In this paper, therefore, we propose a comprehensive data analysis framework to fully analyze the collected probe requests to extract three types of patterns related to crowd behaviors in a large social event, with the help of statistics, visualization, and unsupervised machine learning. First, trajectories of the mobile devices are extracted from probe requests and analyzed to reveal the spatial patterns of the crowds movement. Hierarchical agglomerative clustering is adopted to find the interconnections between different locations. Next, k-means and k-shape clustering algorithms are applied to extract temporal visiting patterns of the crowds by days and locations, respectively. Finally, by combining with time, trajectories are transformed into spatiotemporal patterns, which reveal how trajectory duration changes over the length and how the overall trends of crowd movement change over time. The proposed data analysis framework is fully demonstrated using real-world data collected in a large social event. Results show that one can extract comprehensive patterns from data collected by a network of passive WiFi sensors.
Crowd algorithms often assume workers are inexperienced and thus fail to adapt as workers in the crowd learn a task. These assumptions fundamentally limit the types of tasks that systems based on such algorithms can handle. This paper explores how the crowd learns and remembers over time in the context of human computation, and how more realistic assumptions of worker experience may be used when designing new systems. We first demonstrate that the crowd can recall information over time and discuss possible implications of crowd memory in the design of crowd algorithms. We then explore crowd learning during a continuous control task. Recent systems are able to disguise dynamic groups of workers as crowd agents to support continuous tasks, but have not yet considered how such agents are able to learn over time. We show, using a real-time gaming setting, that crowd agents can learn over time, and `remember by passing strategies from one generation of workers to the next, despite high turnover rates in the workers comprising them. We conclude with a discussion of future research directions for crowd memory and learning.
Echo chambers may exclude social media users from being exposed to other opinions, therefore, can cause rampant negative effects. Among abundant evidence are the 2016 and 2020 US presidential elections conspiracy theories and polarization, as well as the COVID-19 disinfodemic. To help better detect echo chambers and mitigate its negative effects, this paper explores the mechanisms and attributes of echo chambers in social media. In particular, we first illustrate four primary mechanisms related to three main factors: human psychology, social networks, and automatic systems. We then depict common attributes of echo chambers with a focus on the diffusion of misinformation, spreading of conspiracy theory, creation of social trends, political polarization, and emotional contagion of users. We illustrate each mechanism and attribute in a multi-perspective of sociology, psychology, and social computing with recent case studies. Our analysis suggest an emerging need to detect echo chambers and mitigate their negative effects.
Although social neuroscience is concerned with understanding how the brain interacts with its social environment, prevailing research in the field has primarily considered the human brain in isolation, deprived of its rich social context. Emerging work in social neuroscience that leverages tools from network analysis has begun to pursue this issue, advancing knowledge of how the human brain influences and is influenced by the structures of its social environment. In this paper, we provide an overview of key theory and methods in network analysis (especially for social systems) as an introduction for social neuroscientists who are interested in relating individual cognition to the structures of an individuals social environments. We also highlight some exciting new work as examples of how to productively use these tools to investigate questions of relevance to social neuroscientists. We include tutorials to help with practical implementation of the concepts that we discuss. We conclude by highlighting a broad range of exciting research opportunities for social neuroscientists who are interested in using network analysis to study social systems.