Do you want to publish a course? Click here

Crowd Memory: Learning in the Collective

183   0   0.0 ( 0 )
 Added by Walter Lasecki
 Publication date 2012
and research's language is English




Ask ChatGPT about the research

Crowd algorithms often assume workers are inexperienced and thus fail to adapt as workers in the crowd learn a task. These assumptions fundamentally limit the types of tasks that systems based on such algorithms can handle. This paper explores how the crowd learns and remembers over time in the context of human computation, and how more realistic assumptions of worker experience may be used when designing new systems. We first demonstrate that the crowd can recall information over time and discuss possible implications of crowd memory in the design of crowd algorithms. We then explore crowd learning during a continuous control task. Recent systems are able to disguise dynamic groups of workers as crowd agents to support continuous tasks, but have not yet considered how such agents are able to learn over time. We show, using a real-time gaming setting, that crowd agents can learn over time, and `remember by passing strategies from one generation of workers to the next, despite high turnover rates in the workers comprising them. We conclude with a discussion of future research directions for crowd memory and learning.



rate research

Read More

Worker recruitment is a crucial research problem in Mobile Crowd Sensing (MCS). While previous studies rely on a specified platform with a pre-assumed large user pool, this paper leverages the influenced propagation on the social network to assist the MCS worker recruitment. We first select a subset of users on the social network as initial seeds and push MCS tasks to them. Then, influenced users who accept tasks are recruited as workers, and the ultimate goal is to maximize the coverage. Specifically, to select a near-optimal set of seeds, we propose two algorithms, named Basic-Selector and Fast-Selector, respectively. Basic-Selector adopts an iterative greedy process based on the predicted mobility, which has good performance but suffers from inefficiency concerns. To accelerate the selection, Fast-Selector is proposed, which is based on the interdependency of geographical positions among friends. Empirical studies on two real-world datasets verify that Fast-Selector achieves higher coverage than baseline methods under various settings, meanwhile, it is much more efficient than Basic-Selector while only sacrificing a slight fraction of the coverage.
Social media enabled a direct path from producer to consumer of contents changing the way users get informed, debate, and shape their worldviews. Such a {em disintermediation} weakened consensus on social relevant issues in favor of rumors, mistrust, and fomented conspiracy thinking -- e.g., chem-trails inducing global warming, the link between vaccines and autism, or the New World Order conspiracy. In this work, we study through a thorough quantitative analysis how different conspiracy topics are consumed in the Italian Facebook. By means of a semi-automatic topic extraction strategy, we show that the most discussed contents semantically refer to four specific categories: {em environment}, {em diet}, {em health}, and {em geopolitics}. We find similar patterns by comparing users activity (likes and comments) on posts belonging to different semantic categories. However, if we focus on the lifetime -- i.e., the distance in time between the first and the last comment for each user -- we notice a remarkable difference within narratives -- e.g., users polarized on geopolitics are more persistent in commenting, whereas the less persistent are those focused on diet related topics. Finally, we model users mobility across various topics finding that the more a user is active, the more he is likely to join all topics. Once inside a conspiracy narrative users tend to embrace the overall corpus.
Online communication channels, especially social web platforms, are rapidly replacing traditional ones. Online platforms allow users to overcome physical barriers, enabling worldwide participation. However, the power of online communication bears an important negative consequence --- we are exposed to too much information to process. Too many participants, for example, can turn online public spaces into noisy, overcrowded fora where no meaningful conversation can be held. Here we analyze a large dataset of public chat logs from Twitch, a popular video streaming platform, in order to examine how information overload affects online group communication. We measure structural and textual features of conversations such as user output, interaction, and information content per message across a wide range of information loads. Our analysis reveals the existence of a transition from a conversational state to a cacophony --- a state of overload with lower user participation, more copy-pasted messages, and less information per message. These results hold both on average and at the individual level for the majority of users. This study provides a quantitative basis for further studies of the social effects of information overload, and may guide the design of more resilient online communication systems.
Socialization in online communities allows existing members to welcome and recruit newcomers, introduce them to community norms and practices, and sustain their early participation. However, socializing newcomers does not come for free: in large communities, socialization can result in a significant workload for mentors and is hard to scale. In this study we present results from an experiment that measured the effect of a lightweight socialization tool on the activity and retention of newly registered users attempting to edit for the first time Wikipedia. Wikipedia is struggling with the retention of newcomers and our results indicate that a mechanism to elicit lightweight feedback and to provide early mentoring to newcomers improves their chances of becoming long-term contributors.
This paper is focused on the computational analysis of collective discourse, a collective behavior seen in non-expert content contributions in online social media. We collect and analyze a wide range of real-world collective discourse datasets from movie user reviews to microblogs and news headlines to scientific citations. We show that all these datasets exhibit diversity of perspective, a property seen in other collective systems and a criterion in wise crowds. Our experiments also confirm that the network of different perspective co-occurrences exhibits the small-world property with high clustering of different perspectives. Finally, we show that non-expert contributions in collective discourse can be used to answer simple questions that are otherwise hard to answer.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا