Do you want to publish a course? Click here

When Crowdsourcing Meets Mobile Sensing: A Social Network Perspective

307   0   0.0 ( 0 )
 Added by Pin-Yu Chen
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

Mobile sensing is an emerging technology that utilizes agent-participatory data for decision making or state estimation, including multimedia applications. This article investigates the structure of mobile sensing schemes and introduces crowdsourcing methods for mobile sensing. Inspired by social network, one can establish trust among participatory agents to leverage the wisdom of crowds for mobile sensing. A prototype of social network inspired mobile multimedia and sensing application is presented for illustrative purpose. Numerical experiments on real-world datasets show improved performance of mobile sensing via crowdsourcing. Challenges for mobile sensing with respect to Internet layers are discussed.

rate research

Read More

Worker recruitment is a crucial research problem in Mobile Crowd Sensing (MCS). While previous studies rely on a specified platform with a pre-assumed large user pool, this paper leverages the influenced propagation on the social network to assist the MCS worker recruitment. We first select a subset of users on the social network as initial seeds and push MCS tasks to them. Then, influenced users who accept tasks are recruited as workers, and the ultimate goal is to maximize the coverage. Specifically, to select a near-optimal set of seeds, we propose two algorithms, named Basic-Selector and Fast-Selector, respectively. Basic-Selector adopts an iterative greedy process based on the predicted mobility, which has good performance but suffers from inefficiency concerns. To accelerate the selection, Fast-Selector is proposed, which is based on the interdependency of geographical positions among friends. Empirical studies on two real-world datasets verify that Fast-Selector achieves higher coverage than baseline methods under various settings, meanwhile, it is much more efficient than Basic-Selector while only sacrificing a slight fraction of the coverage.
229 - Fan Zhang , Ying Zhang , Lu Qin 2016
In this paper, we investigate the problem of (k,r)-core which intends to find cohesive subgraphs on social networks considering both user engagement and similarity perspectives. In particular, we adopt the popular concept of k-core to guarantee the engagement of the users (vertices) in a group (subgraph) where each vertex in a (k,r)-core connects to at least k other vertices. Meanwhile, we also consider the pairwise similarity between users based on their profiles. For a given similarity metric and a similarity threshold r, the similarity between any two vertices in a (k,r)-core is ensured not less than r. Efficient algorithms are proposed to enumerate all maximal (k,r)-cores and find the maximum (k,r)-core, where both problems are shown to be NP-hard. Effective pruning techniques significantly reduce the search space of two algorithms and a novel (k,k)-core based (k,r)-core size upper bound enhances performance of the maximum (k,r)-core computation. We also devise effective search orders to accommodate the different nature of two mining algorithms. Comprehensive experiments on real-life data demonstrate that the maximal/maximum (k,r)-cores enable us to find interesting cohesive subgraphs, and performance of two mining algorithms is significantly improved by proposed techniques.
While liking or upvoting a post on a mobile app is easy to do, replying with a written note is much more difficult, due to both the cognitive load of coming up with a meaningful response as well as the mechanics of entering the text. Here we present a novel textual reply generation model that goes beyond the current auto-reply and predictive text entry models by taking into account the content preferences of the user, the idiosyncrasies of their conversational style, and even the structure of their social graph. Specifically, we have developed two types of models for personalized user interactions: a content-based conversation model, which makes use of location together with user information, and a social-graph-based conversation model, which combines content-based conversation models with social graphs.
Mobile crowdsensing (MCS) is an emerging sensing data collection pattern with scalability, low deployment cost, and distributed characteristics. Traditional MCS systems suffer from privacy concerns and fair reward distribution. Moreover, existing privacy-preserving MCS solutions usually focus on the privacy protection of data collection rather than that of data processing. To tackle faced problems of MCS, in this paper, we integrate federated learning (FL) into MCS and propose a privacy-preserving MCS system, called textsc{CrowdFL}. Specifically, in order to protect privacy, participants locally process sensing data via federated learning and only upload encrypted training models. Particularly, a privacy-preserving federated averaging algorithm is proposed to average encrypted training models. To reduce computation and communication overhead of restraining dropped participants, discard and retransmission strategies are designed. Besides, a privacy-preserving posted pricing incentive mechanism is designed, which tries to break the dilemma of privacy protection and data evaluation. Theoretical analysis and experimental evaluation on a practical MCS application demonstrate the proposed textsc{CrowdFL} can effectively protect participants privacy and is feasible and efficient.
Although social neuroscience is concerned with understanding how the brain interacts with its social environment, prevailing research in the field has primarily considered the human brain in isolation, deprived of its rich social context. Emerging work in social neuroscience that leverages tools from network analysis has begun to pursue this issue, advancing knowledge of how the human brain influences and is influenced by the structures of its social environment. In this paper, we provide an overview of key theory and methods in network analysis (especially for social systems) as an introduction for social neuroscientists who are interested in relating individual cognition to the structures of an individuals social environments. We also highlight some exciting new work as examples of how to productively use these tools to investigate questions of relevance to social neuroscientists. We include tutorials to help with practical implementation of the concepts that we discuss. We conclude by highlighting a broad range of exciting research opportunities for social neuroscientists who are interested in using network analysis to study social systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا