Do you want to publish a course? Click here

Irreducibility of the moduli space of orthogonal instanton bundles on $mathbb{P}^n$

91   0   0.0 ( 0 )
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

In order to obtain existence criteria for orthogonal instanton bundles on $mathbb{P}^n$, we provide a bijection between equivalence classes of orthogonal instanton bundles with no global sections and symmetric forms. Using such correspondence we are able to provide explicit examples of orthogonal instanton bundles with no global sections on $mathbb{P}^n$ and prove that every orthogonal instanton bundle with no global sections on $mathbb{P}^n$ and charge $cgeq 3$ has rank $rleq (n-1)c$. We also prove that when the rank $r$ of the bundles reaches the upper bound, $mathcal{M}_{mathbb{P}^n}^{mathcal{O}}(c,r)$, the coarse moduli space of orthogonal instanton bundles with no global sections on $mathbb{P}^n$, with charge $cgeq 3$ and rank $r$, is affine, reduced and irreducible. Last, we construct Kronecker modules to determine the splitting type of the bundles in $mathcal{M}_{mathbb{P}^n}^{mathcal{O}}(c,r)$, whenever is non-empty.



rate research

Read More

We give necessary and sufficient conditions for moduli spaces of semistable chains on a curve to be irreducible and non-empty. This gives information on the irreducible components of the nilpotent cone of GL_n-Higgs bundles and the irreducible components of moduli of systems of Hodge bundles on curves. As we do not impose coprimality restrictions, we can apply this to prove connectedness for moduli spaces of U(p,q)-Higgs bundles.
The moduli space of Higgs bundles has two stratifications. The Bialynicki-Birula stratification comes from the action of the non-zero complex numbers by multiplication on the Higgs field, and the Shatz stratification arises from the Harder-Narasimhan type of the vector bundle underlying a Higgs bundle. While these two stratification coincide in the case of rank two Higgs bundles, this is not the case in higher rank. In this paper we analyze the relation between the two stratifications for the moduli space of rank three Higgs bundles.
We study the problem of rationality of an infinite series of components, the so-called Ein components, of the Gieseker-Maruyama moduli space $M(e,n)$ of rank 2 stable vector bundles with the first Chern class $e=0$ or -1 and all possible values of the second Chern class $n$ on the projective 3-space. The generalized null correlation bundles constituting open dense subsets of these components are defined as cohomology bundles of monads whose members are direct sums of line bundles of degrees depending on nonnegative integers $a,b,c$, where $bge a$ and $c>a+b$. We show that, in the wide range when $c>2a+b-e, b>a, (e,a) e(0,0)$, the Ein components are rational, and in the remaining cases they are at least stably rational. As a consequence, the union of the spaces $M(e,n)$ over all $nge1$ contains an infinite series of rational components for both $e=0$ and $e=-1$. Explicit constructions of rationality of Ein components under the above conditions on $e,a,b,c$ and, respectively, of their stable rationality in the remaining cases, are given. In the case of rationality, we construct universal families of generalized null correlation bundles over certain open subsets of Ein components showing that these subsets are fine moduli spaces. As a by-product of our construction, for $c_1=0$ and $n$ even, they provide, perhaps the first known, examples of fine moduli spaces not satisfying the condition $n$ is odd, which is a usual sufficient condition for fineness.
This paper considers the moduli spaces (stacks) of parabolic bundles (parabolic logarithmic flat bundles with given spectrum, parabolic regular Higgs bundles) with rank 2 and degree 1 over $mathbb{P}^1$ with five marked points. The stratification structures on these moduli spaces (stacks) are investigated. We confirm Simpsons foliation conjecture of moduli space of parabolic logarithmic flat bundles for our case.
262 - Insong Choe , Kiryong Chung , 2020
Let $C$ be an algebraic curve of genus $g$ and $L$ a line bundle over $C$. Let $mathcal{MS}_C(n,L)$ and $mathcal{MO}_C(n,L)$ be the moduli spaces of $L$-valued symplectic and orthogonal bundles respectively, over $C$ of rank $n$. We construct rational curves on these moduli spaces which generalize Hecke curves on the moduli space of vector bundles. As a main result, we show that these Hecke type curves have the minimal degree among the rational curves passing through a general point of the moduli spaces. As its byproducts, we show the non-abelian Torelli theorem and compute the automorphism group of moduli spaces.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا