No Arabic abstract
Let $C$ be an algebraic curve of genus $g$ and $L$ a line bundle over $C$. Let $mathcal{MS}_C(n,L)$ and $mathcal{MO}_C(n,L)$ be the moduli spaces of $L$-valued symplectic and orthogonal bundles respectively, over $C$ of rank $n$. We construct rational curves on these moduli spaces which generalize Hecke curves on the moduli space of vector bundles. As a main result, we show that these Hecke type curves have the minimal degree among the rational curves passing through a general point of the moduli spaces. As its byproducts, we show the non-abelian Torelli theorem and compute the automorphism group of moduli spaces.
Let $X$ be a compact connected Riemann surface, $D, subset, X$ a reduced effective divisor, $G$ a connected complex reductive affine algebraic group and $H_x, subsetneq, G_x$ a Zariski closed subgroup for every $x, in, D$. A framed principal $G$--bundle is a pair $(E_G,, phi)$, where $E_G$ is a holomorphic principal $G$--bundle on $X$ and $phi$ assigns to each $x, in, D$ a point of the quotient space $(E_G)_x/H_x$. A framed $G$--Higgs bundle is a framed principal $G$--bundle $(E_G,, phi)$ together with a section $theta, in, H^0(X,, text{ad}(E_G)otimes K_Xotimes{mathcal O}_X(D))$ such that $theta(x)$ is compatible with the framing $phi$ for every $x, in, D$. We construct a holomorphic symplectic structure on the moduli space $mathcal{M}_{FH}(G)$ of stable framed $G$--Higgs bundles. Moreover, we prove that the natural morphism from $mathcal{M}_{FH}(G)$ to the moduli space $mathcal{M}_{H}(G)$ of $D$-twisted $G$--Higgs bundles $(E_G,, theta)$ that forgets the framing, is Poisson. These results generalize cite{BLP} where $(G,, {H_x}_{xin D})$ is taken to be $(text{GL}(r,{mathbb C}),, {text{I}_{rtimes r}}_{xin D})$. We also investigate the Hitchin system for $mathcal{M}_{FH}(G)$ and its relationship with that for $mathcal{M}_{H}(G)$.
Let $X$ be a smooth projective curve of genus $g geq 2$ and $M$ be the moduli space of rank 2 stable vector bundles on $X$ whose determinants are isomorphic to a fixed odd degree line bundle $L$. There has been a lot of works studying the moduli and recently the bounded derived category of coherent sheaves on $M$ draws lots of attentions. It was proved that the derived category of $X$ can be embedded into the derived category of $M$ by the second named author and Fonarev-Kuznetsov. In this paper we prove that the derived category of the second symmetric product of $X$ can be embedded into derived category of $M$ when $X$ is non-hyperelliptic and $g geq 16$.
We investigate orthogonal and symplectic bundles with parabolic structure, over a curve.
We study the rational Chow motives of certain moduli spaces of vector bundles on a smooth projective curve with additional structure (such as a parabolic structure or Higgs field). In the parabolic case, these moduli spaces depend on a choice of stability condition given by weights; our approach is to use explicit descriptions of variation of this stability condition in terms of simple birational transformations (standard flips/flops and Mukai flops) for which we understand the variation of the Chow motives. For moduli spaces of parabolic vector bundles, we describe the change in motive under wall-crossings, and for moduli spaces of parabolic Higgs bundles, we show the motive does not change under wall-crossings. Furthermore, we prove a motivic analogue of a classical theorem of Harder and Narasimhan relating the rational cohomology of moduli spaces of vector bundles with and without fixed determinant. For rank 2 vector bundles of odd degree, we obtain formulas for the rational Chow motives of moduli spaces of semistable vector bundles, moduli spaces of Higgs bundles and moduli spaces of parabolic (Higgs) bundles that are semistable with respect to a generic weight (all with and without fixed determinant).
We consider a uniform $r$-bundle $E$ on a complex rational homogeneous space $X$ %over complex number field $mathbb{C}$ and show that if $E$ is poly-uniform with respect to all the special families of lines and the rank $r$ is less than or equal to some number that depends only on $X$, then $E$ is either a direct sum of line bundles or $delta_i$-unstable for some $delta_i$. So we partially answer a problem posted by Mu~{n}oz-Occhetta-Sol{a} Conde. In particular, if $X$ is a generalized Grassmannian $mathcal{G}$ and the rank $r$ is less than or equal to some number that depends only on $X$, then $E$ splits as a direct sum of line bundles. We improve the main theorem of Mu~{n}oz-Occhetta-Sol{a} Conde when $X$ is a generalized Grassmannian by considering the Chow rings. Moreover, by calculating the relative tangent bundles between two rational homogeneous spaces, we give explicit bounds for the generalized Grauert-M{u}lich-Barth theorem on rational homogeneous spaces.