Do you want to publish a course? Click here

Moduli Spaces of Parabolic Bundles over $mathbb{P}^1$ with Five Marked Points

112   0   0.0 ( 0 )
 Added by Runhong Zong
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

This paper considers the moduli spaces (stacks) of parabolic bundles (parabolic logarithmic flat bundles with given spectrum, parabolic regular Higgs bundles) with rank 2 and degree 1 over $mathbb{P}^1$ with five marked points. The stratification structures on these moduli spaces (stacks) are investigated. We confirm Simpsons foliation conjecture of moduli space of parabolic logarithmic flat bundles for our case.



rate research

Read More

We study a space of genus $g$ stable, $n$-marked tropical curves with total edge length $1$. Its rational homology is identified both with top-weight cohomology of the complex moduli space $M_{g,n}$ and with the homology of a marked version of Kontsevichs graph complex, up to a shift in degrees. We prove a contractibility criterion that applies to various large subspaces. From this we derive a description of the homotopy type of the tropical moduli space for $g = 1$, the top weight cohomology of $M_{1,n}$ as an $S_n$-representation, and additional calculations for small $(g,n)$. We also deduce a vanishing theorem for homology of marked graph complexes from vanishing of cohomology of $M_{g,n}$ in appropriate degrees, and comment on stability phenomena, or lack thereof.
54 - Masao Jinzenji 2017
In this paper, we construct toric data of moduli space of quasi maps of degree $d$ from P^{1} with two marked points to weighted projective space P(1.1,1,3). With this result, we prove that the moduli space is a compact toric orbifold. We also determine its Chow ring. Moreover, we give a proof of the conjecture proposed by Jinzenji that a series of intersection numbers of the moduli spaces coincides with expansion coefficients of inverse function of -log(j(tau)).
183 - Marina Logares 2006
Let X be a compact Riemann surface together with a finite set of marked points. We use Morse theoretic techniques to compute the Betti numbers of the parabolic U(2,1)-Higgs bundles moduli spaces over X. We give examples for one marked point showing that the Poincare polynomials depend on the system of weights of the parabolic bundle.
We prove a Torelli theorem for the moduli space of semistable parabolic Higgs bundles over a smooth complex projective algebraic curve under the assumption that the parabolic weight system is generic. When the genus is at least two, using this result we also prove a Torelli theorem for the moduli space of semistable parabolic bundles of rank at least two with generic parabolic weights. The key input in the proofs is a method of J.C. Hurtubise, Integrable systems and algebraic surfaces, Duke Math. Jour. 83 (1996), 19--49.
117 - Michael Thaddeus 2000
We study moduli spaces of parabolic Higgs bundles on a curve and their dependence on the choice of weights. We describe the chamber structure on the space of weights and show that, when a wall is crossed, the moduli space undergoes an elementary transformation in the sense of Mukai.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا