Do you want to publish a course? Click here

The Amazing Mysteries of the Gutter: Drawing Inferences Between Panels in Comic Book Narratives

88   0   0.0 ( 0 )
 Added by Mohit Iyyer
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Visual narrative is often a combination of explicit information and judicious omissions, relying on the viewer to supply missing details. In comics, most movements in time and space are hidden in the gutters between panels. To follow the story, readers logically connect panels together by inferring unseen actions through a process called closure. While computers can now describe what is explicitly depicted in natural images, in this paper we examine whether they can understand the closure-driven narratives conveyed by stylized artwork and dialogue in comic book panels. We construct a dataset, COMICS, that consists of over 1.2 million panels (120 GB) paired with automatic textbox transcriptions. An in-depth analysis of COMICS demonstrates that neither text nor image alone can tell a comic book story, so a computer must understand both modalities to keep up with the plot. We introduce three cloze-style tasks that ask models to predict narrative and character-centric aspects of a panel given n preceding panels as context. Various deep neural architectures underperform human baselines on these tasks, suggesting that COMICS contains fundamental challenges for both vision and language.



rate research

Read More

Visual data storytelling is gaining importance as a means of presenting data-driven information or analysis results, especially to the general public. This has resulted in design principles being proposed for data-driven storytelling, and new authoring tools being created to aid such storytelling. However, data analysts typically lack sufficient background in design and storytelling to make effective use of these principles and authoring tools. To assist this process, we present ChartStory for crafting data stories from a collection of user-created charts, using a style akin to comic panels to imply the underlying sequence and logic of data-driven narratives. Our approach is to operationalize established design principles into an advanced pipeline which characterizes charts by their properties and similarity, and recommends ways to partition, layout, and caption story pieces to serve a narrative. ChartStory also augments this pipeline with intuitive user interactions for visual refinement of generated data comics. We extensively and holistically evaluate ChartStory via a trio of studies. We first assess how the tool supports data comic creation in comparison to a manual baseline tool. Data comics from this study are subsequently compared and evaluated to ChartStorys automated recommendations by a team of narrative visualization practitioners. This is followed by a pair of interview studies with data scientists using their own datasets and charts who provide an additional assessment of the system. We find that ChartStory provides cogent recommendations for narrative generation, resulting in data comics that compare favorably to manually-created ones.
Due to the rapid emergence of short videos and the requirement for content understanding and creation, the video captioning task has received increasing attention in recent years. In this paper, we convert traditional video captioning task into a new paradigm, ie, Open-book Video Captioning, which generates natural language under the prompts of video-content-relevant sentences, not limited to the video itself. To address the open-book video captioning problem, we propose a novel Retrieve-Copy-Generate network, where a pluggable video-to-text retriever is constructed to retrieve sentences as hints from the training corpus effectively, and a copy-mechanism generator is introduced to extract expressions from multi-retrieved sentences dynamically. The two modules can be trained end-to-end or separately, which is flexible and extensible. Our framework coordinates the conventional retrieval-based methods with orthodox encoder-decoder methods, which can not only draw on the diverse expressions in the retrieved sentences but also generate natural and accurate content of the video. Extensive experiments on several benchmark datasets show that our proposed approach surpasses the state-of-the-art performance, indicating the effectiveness and promising of the proposed paradigm in the task of video captioning.
81 - Aaron Hertzmann 2021
It has often been conjectured that the effectiveness of line drawings can be explained by the similarity of edge images to line drawings. This paper presents several problems with explaining line drawing perception in terms of edges, and how the recently-proposed Realism Hypothesis of Hertzmann (2020) resolves these problems. There is nonetheless existing evidence that edges are often the best features for predicting where people draw lines; this paper describes how the Realism Hypothesis can explain this evidence.
84 - Bruce E Sagan 2021
Let G be a combinatorial graph with vertices V and edges E. A proper coloring of G is an assignment of colors to the vertices such that no edge connects two vertices of the same color. These are the colorings considered in the famous Four Color Theorem. It turns out that the number of proper colorings of G using t colors is a polynomial in t, called the chromatic polynomial of G. This polynomial has many wonderful properties. It also has the surprising habit of appearing in contexts which, a priori, have nothing to do with graph coloring. We will survey three such instances involving acyclic orientations, hyperplane arrangements, and increasing forests. In addition, connections to symmetric functions and algebraic geometry will be mentioned.
The Clinical E-Science Framework (CLEF) project was used to extract important information from medical texts by building a system for the purpose of clinical research, evidence-based healthcare and genotype-meets-phenotype informatics. The system is divided into two parts, one part concerns with the identification of relationships between clinically important entities in the text. The full parses and domain-specific grammars had been used to apply many approaches to extract the relationship. In the second part of the system, statistical machine learning (ML) approaches are applied to extract relationship. A corpus of oncology narratives that hand annotated with clinical relationships can be used to train and test a system that has been designed and implemented by supervised machine learning (ML) approaches. Many features can be extracted from these texts that are used to build a model by the classifier. Multiple supervised machine learning algorithms can be applied for relationship extraction. Effects of adding the features, changing the size of the corpus, and changing the type of the algorithm on relationship extraction are examined. Keywords: Text mining; information extraction; NLP; entities; and relations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا