No Arabic abstract
Visual data storytelling is gaining importance as a means of presenting data-driven information or analysis results, especially to the general public. This has resulted in design principles being proposed for data-driven storytelling, and new authoring tools being created to aid such storytelling. However, data analysts typically lack sufficient background in design and storytelling to make effective use of these principles and authoring tools. To assist this process, we present ChartStory for crafting data stories from a collection of user-created charts, using a style akin to comic panels to imply the underlying sequence and logic of data-driven narratives. Our approach is to operationalize established design principles into an advanced pipeline which characterizes charts by their properties and similarity, and recommends ways to partition, layout, and caption story pieces to serve a narrative. ChartStory also augments this pipeline with intuitive user interactions for visual refinement of generated data comics. We extensively and holistically evaluate ChartStory via a trio of studies. We first assess how the tool supports data comic creation in comparison to a manual baseline tool. Data comics from this study are subsequently compared and evaluated to ChartStorys automated recommendations by a team of narrative visualization practitioners. This is followed by a pair of interview studies with data scientists using their own datasets and charts who provide an additional assessment of the system. We find that ChartStory provides cogent recommendations for narrative generation, resulting in data comics that compare favorably to manually-created ones.
Charts often contain visually prominent features that draw attention to aspects of the data and include text captions that emphasize aspects of the data. Through a crowdsourced study, we explore how readers gather takeaways when considering charts and captions together. We first ask participants to mark visually prominent regions in a set of line charts. We then generate text captions based on the prominent features and ask participants to report their takeaways after observing chart-caption pairs. We find that when both the chart and caption describe a high-prominence feature, readers treat the doubly emphasized high-prominence feature as the takeaway; when the caption describes a low-prominence chart feature, readers rely on the chart and report a higher-prominence feature as the takeaway. We also find that external information that provides context, helps further convey the captions message to the reader. We use these findings to provide guidelines for authoring effective chart-caption pairs.
We propose a novel approach for constraint-based graphical user interface (GUI) layout based on OR-constraints (ORC) in standard soft/hard linear constraint systems. ORC layout unifies grid layout and flow layout, supporting both their features as well as cases where grid and flow layouts individually fail. We describe ORC design patterns that enable designers to safely create flexible layouts that work across different screen sizes and orientations. We also present the ORC Editor, a GUI editor that enables designers to apply ORC in a safe and effective manner, mixing grid, flow and new ORC layout features as appropriate. We demonstrate that our prototype can adapt layouts to screens with different aspect ratios with only a single layout specification, easing the burden of GUI maintenance. Finally, we show that ORC specifications can be modified interactively and solved efficiently at runtime.
Charts go hand in hand with text to communicate complex data and are widely adopted in news articles, online blogs, and academic papers. They provide graphical summaries of the data, while text explains the message and context. However, synthesizing information across text and charts is difficult; it requires readers to frequently shift their attention. We investigated ways to support the tight coupling of text and charts in data documents. To understand their interplay, we analyzed the design space of chart-text references through news articles and scientific papers. Informed by the analysis, we developed a mixed-initiative interface enabling users to construct interactive references between text and charts. It leverages natural language processing to automatically suggest references as well as allows users to manually construct other references effortlessly. A user study complemented with algorithmic evaluation of the system suggests that the interface provides an effective way to compose interactive data documents.
Visual narrative is often a combination of explicit information and judicious omissions, relying on the viewer to supply missing details. In comics, most movements in time and space are hidden in the gutters between panels. To follow the story, readers logically connect panels together by inferring unseen actions through a process called closure. While computers can now describe what is explicitly depicted in natural images, in this paper we examine whether they can understand the closure-driven narratives conveyed by stylized artwork and dialogue in comic book panels. We construct a dataset, COMICS, that consists of over 1.2 million panels (120 GB) paired with automatic textbox transcriptions. An in-depth analysis of COMICS demonstrates that neither text nor image alone can tell a comic book story, so a computer must understand both modalities to keep up with the plot. We introduce three cloze-style tasks that ask models to predict narrative and character-centric aspects of a panel given n preceding panels as context. Various deep neural architectures underperform human baselines on these tasks, suggesting that COMICS contains fundamental challenges for both vision and language.
Conversations contain a wide spectrum of multimodal information that gives us hints about the emotions and moods of the speaker. In this paper, we developed a system that supports humans to analyze conversations. Our main contribution is the identification of appropriate multimodal features and the integration of such features into verbatim conversation transcripts. We demonstrate the ability of our system to take in a wide range of multimodal information and automatically generated a prediction score for the depression state of the individual. Our experiments showed that this approach yielded better performance than the baseline model. Furthermore, the multimodal narrative approach makes it easy to integrate learnings from other disciplines, such as conversational analysis and psychology. Lastly, this interdisciplinary and automated approach is a step towards emulating how practitioners record the course of treatment as well as emulating how conversational analysts have been analyzing conversations by hand.