Do you want to publish a course? Click here

The Role of Edges in Line Drawing Perception

82   0   0.0 ( 0 )
 Added by Aaron Hertzmann
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

It has often been conjectured that the effectiveness of line drawings can be explained by the similarity of edge images to line drawings. This paper presents several problems with explaining line drawing perception in terms of edges, and how the recently-proposed Realism Hypothesis of Hertzmann (2020) resolves these problems. There is nonetheless existing evidence that edges are often the best features for predicting where people draw lines; this paper describes how the Realism Hypothesis can explain this evidence.

rate research

Read More

In this paper, we present a joint end-to-end line segment detection algorithm using Transformers that is post-processing and heuristics-guided intermediate processing (edge/junction/region detection) free. Our method, named LinE segment TRansformers (LETR), takes advantages of having integrated tokenized queries, a self-attention mechanism, and an encoding-decoding strategy within Transformers by skipping standard heuristic designs for the edge element detection and perceptual grouping processes. We equip Transformers with a multi-scale encoder/decoder strategy to perform fine-grained line segment detection under a direct endpoint distance loss. This loss term is particularly suitable for detecting geometric structures such as line segments that are not conveniently represented by the standard bounding box representations. The Transformers learn to gradually refine line segments through layers of self-attention. In our experiments, we show state-of-the-art results on Wireframe and YorkUrban benchmarks.
Non-line-of-sight (NLOS) imaging techniques use light that diffusely reflects off of visible surfaces (e.g., walls) to see around corners. One approach involves using pulsed lasers and ultrafast sensors to measure the travel time of multiply scattered light. Unlike existing NLOS techniques that generally require densely raster scanning points across the entirety of a relay wall, we explore a more efficient form of NLOS scanning that reduces both acquisition times and computational requirements. We propose a circular and confocal non-line-of-sight (C2NLOS) scan that involves illuminating and imaging a common point, and scanning this point in a circular path along a wall. We observe that (1) these C2NLOS measurements consist of a superposition of sinusoids, which we refer to as a transient sinogram, (2) there exists computationally efficient reconstruction procedures that transform these sinusoidal measurements into 3D positions of hidden scatterers or NLOS images of hidden objects, and (3) despite operating on an order of magnitude fewer measurements than previous approaches, these C2NLOS scans provide sufficient information about the hidden scene to solve these different NLOS imaging tasks. We show results from both simulated and real C2NLOS scans.
74 - Aaron Hertzmann 2020
Why is it that we can recognize object identity and 3D shape from line drawings, even though they do not exist in the natural world? This paper hypothesizes that the human visual system perceives line drawings as if they were approximately realistic images. Moreover, the techniques of line drawing are chosen to accurately convey shape to a human observer. Several implications and variants of this hypothesis are explored.
78 - Enrique Rosales 2021
Spatial drawing using ruled-surface brush strokes is a popular mode of content creation in immersive VR, yet little is known about the usability of existing spatial drawing interfaces or potential improvements. We address these questions in a three-phase study. (1) Our exploratory need-finding study (N=8) indicates that popular spatial brushes require users to perform large wrist motions, causing physical strain. We speculate that this is partly due to constraining users to align their 3D controllers with their intended stroke normal orientation. (2) We designed and implemented a new brush interface that significantly reduces the physical effort and wrist motion involved in VR drawing, with the additional benefit of increasing drawing accuracy. We achieve this by relaxing the normal alignment constraints, allowing users to control stroke rulings, and estimating normals from them instead. (3) Our comparative evaluation of StripBrush (N=17) against the traditional brush shows that StripBrush requires significantly less physical effort and allows users to more accurately depict their intended shapes while offering competitive ease-of-use and speed.
Knowledge of human perception has long been incorporated into visualizations to enhance their quality and effectiveness. The last decade, in particular, has shown an increase in perception-based visualization research studies. With all of this recent progress, the visualization community lacks a comprehensive guide to contextualize their results. In this report, we provide a systematic and comprehensive review of research studies on perception related to visualization. This survey reviews perception-focused visualization studies since 1980 and summarizes their research developments focusing on low-level tasks, further breaking techniques down by visual encoding and visualization type. In particular, we focus on how perception is used to evaluate the effectiveness of visualizations, to help readers understand and apply the principles of perception of their visualization designs through a task-optimized approach. We concluded our report with a summary of the weaknesses and open research questions in the area.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا