Do you want to publish a course? Click here

Aboveground biomass mapping in French Guiana by combining remote sensing, forest inventories and environmental data

186   0   0.0 ( 0 )
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Mapping forest aboveground biomass (AGB) has become an important task, particularly for the reporting of carbon stocks and changes. AGB can be mapped using synthetic aperture radar data (SAR) or passive optical data. However, these data are insensitive to high AGB levels (textgreater{}150 Mg/ha, and textgreater{}300 Mg/ha for P-band), which are commonly found in tropical forests. Studies have mapped the rough variations in AGB by combining optical and environmental data at regional and global scales. Nevertheless, these maps cannot represent local variations in AGB in tropical forests. In this paper, we hypothesize that the problem of misrepresenting local variations in AGB and AGB estimation with good precision occurs because of both methodological limits (signal saturation or dilution bias) and a lack of adequate calibration data in this range of AGB values. We test this hypothesis by developing a calibrated regression model to predict variations in high AGB values (mean textgreater{}300 Mg/ha) in French Guiana by a methodological approach for spatial extrapolation with data from the optical geoscience laser altimeter system (GLAS), forest inventories, radar, optics, and environmental variables for spatial inter-and extrapolation. Given their higher point count, GLAS data allow a wider coverage of AGB values. We find that the metrics from GLAS footprints are correlated with field AGB estimations (R 2 =0.54, RMSE=48.3 Mg/ha) with no bias for high values. First, predictive models, including remote-sensing, environmental variables and spatial correlation functions, allow us to obtain wall-to-wall AGB maps over French Guiana with an RMSE for the in situ AGB estimates of ~51 Mg/ha and R${}^2$=0.48 at a 1-km grid size. We conclude that a calibrated regression model based on GLAS with dependent environmental data can produce good AGB predictions even for high AGB values if the calibration data fit the AGB range. We also demonstrate that small temporal and spatial mismatches between field data and GLAS footprints are not a problem for regional and global calibrated regression models because field data aim to predict large and deep tendencies in AGB variations from environmental gradients and do not aim to represent high but stochastic and temporally limited variations from forest dynamics. Thus, we advocate including a greater variety of data, even if less precise and shifted, to better represent high AGB values in global models and to improve the fitting of these models for high values.



rate research

Read More

Over the last few decades, deforestation and climate change have caused increasing number of forest fires. In Southeast Asia, Indonesia has been the most affected country by tropical peatland forest fires. These fires have a significant impact on the climate resulting in extensive health, social and economic issues. Existing forest fire prediction systems, such as the Canadian Forest Fire Danger Rating System, are based on handcrafted features and require installation and maintenance of expensive instruments on the ground, which can be a challenge for developing countries such as Indonesia. We propose a novel, cost-effective, machine-learning based approach that uses remote sensing data to predict forest fires in Indonesia. Our prediction model achieves more than 0.81 area under the receiver operator characteristic (ROC) curve, performing significantly better than the baseline approach which never exceeds 0.70 area under ROC curve on the same tasks. Our models performance remained above 0.81 area under ROC curve even when evaluated with reduced data. The results support our claim that machine-learning based approaches can lead to reliable and cost-effective forest fire prediction systems.
Earth observation from satellite sensory data poses challenging problems, where machine learning is currently a key player. In recent years, Gaussian Process (GP) regression has excelled in biophysical parameter estimation tasks from airborne and satellite observations. GP regression is based on solid Bayesian statistics and generally yields efficient and accurate parameter estimates. However, GPs are typically used for inverse modeling based on concurrent observations and in situ measurements only. Very often a forward model encoding the well-understood physical relations between the state vector and the radiance observations is available though and could be useful to improve predictions and understanding. In this work, we review three GP models that respect and learn the physics of the underlying processes in the context of both forward and inverse modeling. After reviewing the traditional application of GPs for parameter retrieval, we introduce a Joint GP (JGP) model that combines in situ measurements and simulated data in a single GP model. Then, we present a latent force model (LFM) for GP modeling that encodes ordinary differential equations to blend data-driven modeling and physical constraints of the system governing equations. The LFM performs multi-output regression, adapts to the signal characteristics, is able to cope with missing data in the time series, and provides explicit latent functions that allow system analysis and evaluation. Finally, we present an Automatic Gaussian Process Emulator (AGAPE) that approximates the forward physical model using concepts from Bayesian optimization and at the same time builds an optimally compact look-up-table for inversion. We give empirical evidence of the performance of these models through illustrative examples of vegetation monitoring and atmospheric modeling.
Air temperature (Ta) is an essential climatological component that controls and influences various earth surface processes. In this study, we make the first attempt to employ deep learning for Ta mapping mainly based on space remote sensing and ground station observations. Considering that Ta varies greatly in space and time and is sensitive to many factors, assimilation data and socioeconomic data are also included for a multi-source data fusion based estimation. Specifically, a 5-layers structured deep belief network (DBN) is employed to better capture the complicated and non-linear relationships between Ta and different predictor variables. Layer-wise pre-training process for essential features extraction and fine-tuning process for weight parameters optimization ensure the robust prediction of Ta spatio-temporal distribution. The DBN model was implemented for 0.01{deg} daily maximum Ta mapping across China. The ten-fold cross-validation results indicate that the DBN model achieves promising results with the RMSE of 1.996{deg}C, MAE of 1.539{deg}C, and R of 0.986 at the national scale. Compared with multiple linear regression (MLR), back-propagation neural network (BPNN) and random forest (RF) method, the DBN model reduces the MAE values by 1.340{deg}C, 0.387{deg}C and 0.222{deg}C, respectively. Further analysis on spatial distribution and temporal tendency of prediction errors both validate the great potentials of DBN in Ta estimation.
We analyze the well observed flare-CME event from October 1, 2011 (SOL2011-10-01T09:18) covering the complete chain of action - from Sun to Earth - for a better understanding of the dynamic evolution of the CME and its embedded magnetic field. We study the solar surface and atmosphere associated with the flare-CME from SDO and ground-based instruments, and also track the CME signature off-limb from combined EUV and white-light data with STEREO. By applying 3D reconstruction techniques (GCS, total mass) to stereoscopic STEREO-SoHO coronagraph data, we track the temporal and spatial evolution of the CME in interplanetary space and derive its geometry and 3D-mass. We combine the GCS and Lundquist model results to derive the axial flux and helicity of the MC from in-situ measurements (Wind). This is compared to nonlinear force-free (NLFF) model results as well as to the reconnected magnetic flux derived from the flare ribbons (flare reconnection flux) and the magnetic flux encompassed by the associated dimming (dimming flux). We find that magnetic reconnection processes were already ongoing before the start of the impulsive flare phase, adding magnetic flux to the flux rope before its final eruption. The dimming flux increases by more than 25% after the end of the flare, indicating that magnetic flux is still added to the flux rope after eruption. Hence, the derived flare reconnection flux is most probably a lower limit for estimating the magnetic flux within the flux rope. We find that the magnetic helicity and axial magnetic flux are reduced in interplanetary space by ~50% and 75%, respectively, possibly indicating to an erosion process. A mass increase of 10% for the CME is observed over the distance range from ~4-20 Rs. The temporal evolution of the CME associated core dimming regions supports the scenario that fast outflows might supply additional mass to the rear part of the CME.
Random forest (RF) missing data algorithms are an attractive approach for dealing with missing data. They have the desirable properties of being able to handle mixed types of missing data, they are adaptive to interactions and nonlinearity, and they have the potential to scale to big data settings. Currently there are many different RF imputation algorithms but relatively little guidance about their efficacy, which motivated us to study their performance. Using a large, diverse collection of data sets, performance of various RF algorithms was assessed under different missing data mechanisms. Algorithms included proximity imputation, on the fly imputation, and imputation utilizing multivariate unsupervised and supervised splitting---the latter class representing a generalization of a new promising imputation algorithm called missForest. Performance of algorithms was assessed by ability to impute data accurately. Our findings reveal RF imputation to be generally robust with performance improving with increasing correlation. Performance was good under moderate to high missingness, and even (in certain cases) when data was missing not at random.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا