Do you want to publish a course? Click here

Physics-Aware Gaussian Processes in Remote Sensing

159   0   0.0 ( 0 )
 Added by Gustau Camps-Valls
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Earth observation from satellite sensory data poses challenging problems, where machine learning is currently a key player. In recent years, Gaussian Process (GP) regression has excelled in biophysical parameter estimation tasks from airborne and satellite observations. GP regression is based on solid Bayesian statistics and generally yields efficient and accurate parameter estimates. However, GPs are typically used for inverse modeling based on concurrent observations and in situ measurements only. Very often a forward model encoding the well-understood physical relations between the state vector and the radiance observations is available though and could be useful to improve predictions and understanding. In this work, we review three GP models that respect and learn the physics of the underlying processes in the context of both forward and inverse modeling. After reviewing the traditional application of GPs for parameter retrieval, we introduce a Joint GP (JGP) model that combines in situ measurements and simulated data in a single GP model. Then, we present a latent force model (LFM) for GP modeling that encodes ordinary differential equations to blend data-driven modeling and physical constraints of the system governing equations. The LFM performs multi-output regression, adapts to the signal characteristics, is able to cope with missing data in the time series, and provides explicit latent functions that allow system analysis and evaluation. Finally, we present an Automatic Gaussian Process Emulator (AGAPE) that approximates the forward physical model using concepts from Bayesian optimization and at the same time builds an optimally compact look-up-table for inversion. We give empirical evidence of the performance of these models through illustrative examples of vegetation monitoring and atmospheric modeling.



rate research

Read More

Leaf area index (LAI) is a key biophysical parameter used to determine foliage cover and crop growth in environmental studies. Smartphones are nowadays ubiquitous sensor devices with high computational power, moderate cost, and high-quality sensors. A smartphone app, called PocketLAI, was recently presented and tested for acquiring ground LAI estimates. In this letter, we explore the use of state-of-the-art nonlinear Gaussian process regression (GPR) to derive spatially explicit LAI estimates over rice using ground data from PocketLAI and Landsat 8 imagery. GPR has gained popularity in recent years because of their solid Bayesian foundations that offers not only high accuracy but also confidence intervals for the retrievals. We show the first LAI maps obtained with ground data from a smartphone combined with advanced machine learning. This work compares LAI predictions and confidence intervals of the retrievals obtained with PocketLAI to those obtained with classical instruments, such as digital hemispheric photography (DHP) and LI-COR LAI-2000. This letter shows that all three instruments got comparable result but the PocketLAI is far cheaper. The proposed methodology hence opens a wide range of possible applications at moderate cost.
Many fields of science and engineering rely on running simulations with complex and computationally expensive models to understand the involved processes in the system of interest. Nevertheless, the high cost involved hamper reliable and exhaustive simulations. Very often such codes incorporate heuristics that ironically make them less tractable and transparent. This paper introduces an active learning methodology for adaptively constructing surrogate models, i.e. emulators, of such costly computer codes in a multi-output setting. The proposed technique is sequential and adaptive, and is based on the optimization of a suitable acquisition function. It aims to achieve accurate approximations, model tractability, as well as compact and expressive simulated datasets. In order to achieve this, the proposed Active Multi-Output Gaussian Process Emulator (AMOGAPE) combines the predictive capacity of Gaussian Processes (GPs) with the design of an acquisition function that favors sampling in low density and fluctuating regions of the approximation functions. Comparing different acquisition functions, we illustrate the promising performance of the method for the construction of emulators with toy examples, as well as for a widely used remote sensing transfer code.
The ability to search for radiation sources is of interest to the Homeland Security community. The hope is to find any radiation sources which may pose a reasonable chance for harm in a terrorist act. The best chance of success for search operations generally comes with fielding as many detection systems as possible. In doing this, the hoped for encounter with the threat source will inevitably be buried in an even larger number of encounters with non-threatening radiation sources commonly used for many medical and industrial use. The problem then becomes effectively filtering the non-threatening sources, and presenting the human-in-the-loop with a modest list of potential threats. Our approach is to field a collection of detection systems which utilize soft-sensing algorithms for the purpose of discriminating potential threat and non-threat objects, based on a variety of machine learning techniques.
The spatial attention is a straightforward approach to enhance the performance for remote sensing image captioning. However, conventional spatial attention approaches consider only the attention distribution on one fixed coarse grid, resulting in the semantics of tiny objects can be easily ignored or disturbed during the visual feature extraction. Worse still, the fixed semantic level of conventional spatial attention limits the image understanding in different levels and perspectives, which is critical for tackling the huge diversity in remote sensing images. To address these issues, we propose a remote sensing image caption generator with instance-awareness and cross-hierarchy attention. 1) The instances awareness is achieved by introducing a multi-level feature architecture that contains the visual information of multi-level instance-possible regions and their surroundings. 2) Moreover, based on this multi-level feature extraction, a cross-hierarchy attention mechanism is proposed to prompt the decoder to dynamically focus on different semantic hierarchies and instances at each time step. The experimental results on public datasets demonstrate the superiority of proposed approach over existing methods.
Earth observation (EO) by airborne and satellite remote sensing and in-situ observations play a fundamental role in monitoring our planet. In the last decade, machine learning and Gaussian processes (GPs) in particular has attained outstanding results in the estimation of bio-geo-physical variables from the acquired images at local and global scales in a time-resolved manner. GPs provide not only accurate estimates but also principled uncertainty estimates for the predictions, can easily accommodate multimodal data coming from different sensors and from multitemporal acquisitions, allow the introduction of physical knowledge, and a formal treatment of uncertainty quantification and error propagation. Despite great advances in forward and inverse modelling, GP models still have to face important challenges that are revised in this perspective paper. GP models should evolve towards data-driven physics-aware models that respect signal characteristics, be consistent with elementary laws of physics, and move from pure regression to observational causal inference.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا