No Arabic abstract
Air temperature (Ta) is an essential climatological component that controls and influences various earth surface processes. In this study, we make the first attempt to employ deep learning for Ta mapping mainly based on space remote sensing and ground station observations. Considering that Ta varies greatly in space and time and is sensitive to many factors, assimilation data and socioeconomic data are also included for a multi-source data fusion based estimation. Specifically, a 5-layers structured deep belief network (DBN) is employed to better capture the complicated and non-linear relationships between Ta and different predictor variables. Layer-wise pre-training process for essential features extraction and fine-tuning process for weight parameters optimization ensure the robust prediction of Ta spatio-temporal distribution. The DBN model was implemented for 0.01{deg} daily maximum Ta mapping across China. The ten-fold cross-validation results indicate that the DBN model achieves promising results with the RMSE of 1.996{deg}C, MAE of 1.539{deg}C, and R of 0.986 at the national scale. Compared with multiple linear regression (MLR), back-propagation neural network (BPNN) and random forest (RF) method, the DBN model reduces the MAE values by 1.340{deg}C, 0.387{deg}C and 0.222{deg}C, respectively. Further analysis on spatial distribution and temporal tendency of prediction errors both validate the great potentials of DBN in Ta estimation.
We investigate active learning in the context of deep neural network models for change detection and map updating. Active learning is a natural choice for a number of remote sensing tasks, including the detection of local surface changes: changes are on the one hand rare and on the other hand their appearance is varied and diffuse, making it hard to collect a representative training set in advance. In the active learning setting, one starts from a minimal set of training examples and progressively chooses informative samples that are annotated by a user and added to the training set. Hence, a core component of an active learning system is a mechanism to estimate model uncertainty, which is then used to pick uncertain, informative samples. We study different mechanisms to capture and quantify this uncertainty when working with deep networks, based on the variance or entropy across explicit or implicit model ensembles. We show that active learning successfully finds highly informative samples and automatically balances the training distribution, and reaches the same performance as a model supervised with a large, pre-annotated training set, with $approx$99% fewer annotated samples.
Identifying regions that have high likelihood for wildfires is a key component of land and forestry management and disaster preparedness. We create a data set by aggregating nearly a decade of remote-sensing data and historical fire records to predict wildfires. This prediction problem is framed as three machine learning tasks. Results are compared and analyzed for four different deep learning models to estimate wildfire likelihood. The results demonstrate that deep learning models can successfully identify areas of high fire likelihood using aggregated data about vegetation, weather, and topography with an AUC of 83%.
In the analysis of empirical signals, detecting correlations that capture genuine interactions between the elements of a complex system is a challenging task with applications across disciplines. Here we analyze a global data set of surface air temperature (SAT) with daily resolution. Hilbert analysis is used to obtain phase, instantaneous frequency and amplitude information of SAT seasonal cycles in different geographical zones. The analysis of the phase dynamics reveals large regions with coherent seasonality. The analysis of the instantaneous frequencies uncovers clean wave patterns formed by alternating regions of negative and positive correlations. In contrast, the analysis of the amplitude dynamics uncovers wave patterns with additional large-scale structures. These structures are interpreted as due to the fact that the amplitude dynamics is affected by processes that act in long and short time scales, while the dynamics of the instantaneous frequency is mainly governed by fast processes. Therefore, Hilbert analysis allows to disentangle climatic processes and to track planetary atmospheric waves. Our results are relevant for the analysis of complex oscillatory signals because they offer a general strategy for uncovering interactions that act at different time scales.
Mapping forest aboveground biomass (AGB) has become an important task, particularly for the reporting of carbon stocks and changes. AGB can be mapped using synthetic aperture radar data (SAR) or passive optical data. However, these data are insensitive to high AGB levels (textgreater{}150 Mg/ha, and textgreater{}300 Mg/ha for P-band), which are commonly found in tropical forests. Studies have mapped the rough variations in AGB by combining optical and environmental data at regional and global scales. Nevertheless, these maps cannot represent local variations in AGB in tropical forests. In this paper, we hypothesize that the problem of misrepresenting local variations in AGB and AGB estimation with good precision occurs because of both methodological limits (signal saturation or dilution bias) and a lack of adequate calibration data in this range of AGB values. We test this hypothesis by developing a calibrated regression model to predict variations in high AGB values (mean textgreater{}300 Mg/ha) in French Guiana by a methodological approach for spatial extrapolation with data from the optical geoscience laser altimeter system (GLAS), forest inventories, radar, optics, and environmental variables for spatial inter-and extrapolation. Given their higher point count, GLAS data allow a wider coverage of AGB values. We find that the metrics from GLAS footprints are correlated with field AGB estimations (R 2 =0.54, RMSE=48.3 Mg/ha) with no bias for high values. First, predictive models, including remote-sensing, environmental variables and spatial correlation functions, allow us to obtain wall-to-wall AGB maps over French Guiana with an RMSE for the in situ AGB estimates of ~51 Mg/ha and R${}^2$=0.48 at a 1-km grid size. We conclude that a calibrated regression model based on GLAS with dependent environmental data can produce good AGB predictions even for high AGB values if the calibration data fit the AGB range. We also demonstrate that small temporal and spatial mismatches between field data and GLAS footprints are not a problem for regional and global calibrated regression models because field data aim to predict large and deep tendencies in AGB variations from environmental gradients and do not aim to represent high but stochastic and temporally limited variations from forest dynamics. Thus, we advocate including a greater variety of data, even if less precise and shifted, to better represent high AGB values in global models and to improve the fitting of these models for high values.
Global lockdowns in response to the COVID-19 pandemic have led to changes in the anthropogenic activities resulting in perceivable air quality improvements. Although several recent studies have analyzed these changes over different regions of the globe, these analyses have been constrained due to the usage of station-based data which is mostly limited upto the metropolitan cities. Also, the quantifiable changes have been reported only for the developed and developing regions leaving the poor economies (e.g. Africa) due to the shortage of in-situ data. Using a comprehensive set of high spatiotemporal resolution satellites and merged products of air pollutants, we analyze the air quality across the globe and quantify the improvement resulting from the suppressed anthropogenic activity during the lockdowns. In particular, we focus on megacities, capitals and cities with high standards of living to make the quantitative assessment. Our results offer valuable insights into the spatial distribution of changes in the air pollutants due to COVID-19 enforced lockdowns. Statistically significant reductions are observed over megacities with mean reduction by 19.74%, 7.38% and 49.9% in nitrogen dioxide (NO2), aerosol optical depth (AOD) and PM 2.5 concentrations. Google Earth Engine empowered cloud computing based remote sensing is used and the results provide a testbed for climate sensitivity experiments and validation of chemistry-climate models. Additionally, Google Earth Engine based apps have been developed to visualize the changes in a real-time fashion.