Do you want to publish a course? Click here

Vista: A Visually, Socially, and Temporally-aware Model for Artistic Recommendation

91   0   0.0 ( 0 )
 Added by Ruining He
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Understanding users interactions with highly subjective content---like artistic images---is challenging due to the complex semantics that guide our preferences. On the one hand one has to overcome `standard recommender systems challenges, such as dealing with large, sparse, and long-tailed datasets. On the other, several new challenges present themselves, such as the need to model content in terms of its visual appearance, or even social dynamics, such as a preference toward a particular artist that is independent of the art they create. In this paper we build large-scale recommender systems to model the dynamics of a vibrant digital art community, Behance, consisting of tens of millions of interactions (clicks and `appreciates) of users toward digital art. Methodologically, our main contributions are to model (a) rich content, especially in terms of its visual appearance; (b) temporal dynamics, in terms of how users prefer `visually consistent content within and across sessions; and (c) social dynamics, in terms of how users exhibit preferences both towards certain art styles, as well as the artists themselves.



rate research

Read More

Self-supervised learning (SSL), which can automatically generate ground-truth samples from raw data, holds vast potential to improve recommender systems. Most existing SSL-based methods perturb the raw data graph with uniform node/edge dropout to generate new data views and then conduct the self-discrimination based contrastive learning over different views to learn generalizable representations. Under this scheme, only a bijective mapping is built between nodes in two different views, which means that the self-supervision signals from other nodes are being neglected. Due to the widely observed homophily in recommender systems, we argue that the supervisory signals from other nodes are also highly likely to benefit the representation learning for recommendation. To capture these signals, a general socially-aware SSL framework that integrates tri-training is proposed in this paper. Technically, our framework first augments the user data views with the user social information. And then under the regime of tri-training for multi-view encoding, the framework builds three graph encoders (one for recommendation) upon the augmented views and iteratively improves each encoder with self-supervision signals from other users, generated by the other two encoders. Since the tri-training operates on the augmented views of the same data sources for self-supervision signals, we name it self-supervised tri-training. Extensive experiments on multiple real-world datasets consistently validate the effectiveness of the self-supervised tri-training framework for improving recommendation. The code is released at https://github.com/Coder-Yu/QRec.
83 - Ruihong Qiu , Sen Wang , Zhi Chen 2021
Visually-aware recommendation on E-commerce platforms aims to leverage visual information of items to predict a users preference. It is commonly observed that users attention to visual features does not always reflect the real preference. Although a user may click and view an item in light of a visual satisfaction of their expectations, a real purchase does not always occur due to the unsatisfaction of other essential features (e.g., brand, material, price). We refer to the reason for such a visually related interaction deviating from the real preference as a visual bias. Existing visually-aware models make use of the visual features as a separate collaborative signal similarly to other features to directly predict the users preference without considering a potential bias, which gives rise to a visually biased recommendation. In this paper, we derive a causal graph to identify and analyze the visual bias of these existing methods. In this causal graph, the visual feature of an item acts as a mediator, which could introduce a spurious relationship between the user and the item. To eliminate this spurious relationship that misleads the prediction of the users real preference, an intervention and a counterfactual inference are developed over the mediator. Particularly, the Total Indirect Effect is applied for a debiased prediction during the testing phase of the model. This causal inference framework is model agnostic such that it can be integrated into the existing methods. Furthermore, we propose a debiased visually-aware recommender system, denoted as CausalRec to effectively retain the supportive significance of the visual information and remove the visual bias. Extensive experiments are conducted on eight benchmark datasets, which shows the state-of-the-art performance of CausalRec and the efficacy of debiasing.
With the emergence of personality computing as a new research field related to artificial intelligence and personality psychology, we have witnessed an unprecedented proliferation of personality-aware recommendation systems. Unlike conventional recommendation systems, these new systems solve traditional problems such as the cold start and data sparsity problems. This survey aims to study and systematically classify personality-aware recommendation systems. To the best of our knowledge, this survey is the first that focuses on personality-aware recommendation systems. We explore the different design choices of personality-aware recommendation systems, by comparing their personality modeling methods, as well as their recommendation techniques. Furthermore, we present the commonly used datasets and point out some of the challenges of personality-aware recommendation systems.
77 - Zhi Bian , Shaojun Zhou , Hao Fu 2021
For better user satisfaction and business effectiveness, more and more attention has been paid to the sequence-based recommendation system, which is used to infer the evolution of users dynamic preferences, and recent studies have noticed that the evolution of users preferences can be better understood from the implicit and explicit feedback sequences. However, most of the existing recommendation techniques do not consider the noise contained in implicit feedback, which will lead to the biased representation of user interest and a suboptimal recommendation performance. Meanwhile, the existing methods utilize item sequence for capturing the evolution of user interest. The performance of these methods is limited by the length of the sequence, and can not effectively model the long-term interest in a long period of time. Based on this observation, we propose a novel CTR model named denoising user-aware memory network (DUMN). Specifically, the framework: (i) proposes a feature purification module based on orthogonal mapping, which use the representation of explicit feedback to purify the representation of implicit feedback, and effectively denoise the implicit feedback; (ii) designs a user memory network to model the long-term interests in a fine-grained way by improving the memory network, which is ignored by the existing methods; and (iii) develops a preference-aware interactive representation component to fuse the long-term and short-term interests of users based on gating to understand the evolution of unbiased preferences of users. Extensive experiments on two real e-commerce user behavior datasets show that DUMN has a significant improvement over the state-of-the-art baselines. The code of DUMN model has been uploaded as an additional material.
Recommender systems take inputs from user history, use an internal ranking algorithm to generate results and possibly optimize this ranking based on feedback. However, often the recommender system is unaware of the actual intent of the user and simply provides recommendations dynamically without properly understanding the thought process of the user. An intelligent recommender system is not only useful for the user but also for businesses which want to learn the tendencies of their users. Finding out tendencies or intents of a user is a difficult problem to solve. Keeping this in mind, we sought out to create an intelligent system which will keep track of the users activity on a web-application as well as determine the intent of the user in each session. We devised a way to encode the users activity through the sessions. Then, we have represented the information seen by the user in a high dimensional format which is reduced to lower dimensions using tensor factorization techniques. The aspect of intent awareness (or scoring) is dealt with at this stage. Finally, combining the user activity data with the contextual information gives the recommendation score. The final recommendations are then ranked using filtering and collaborative recommendation techniques to show the top-k recommendations to the user. A provision for feedback is also envisioned in the current system which informs the model to update the various weights in the recommender system. Our overall model aims to combine both frequency-based and context-based recommendation systems and quantify the intent of a user to provide better recommendations. We ran experiments on real-world timestamped user activity data, in the setting of recommending reports to the users of a business analytics tool and the results are better than the baselines. We also tuned certain aspects of our model to arrive at optimized results.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا