Do you want to publish a course? Click here

Denoising User-aware Memory Network for Recommendation

78   0   0.0 ( 0 )
 Added by Hao Fu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

For better user satisfaction and business effectiveness, more and more attention has been paid to the sequence-based recommendation system, which is used to infer the evolution of users dynamic preferences, and recent studies have noticed that the evolution of users preferences can be better understood from the implicit and explicit feedback sequences. However, most of the existing recommendation techniques do not consider the noise contained in implicit feedback, which will lead to the biased representation of user interest and a suboptimal recommendation performance. Meanwhile, the existing methods utilize item sequence for capturing the evolution of user interest. The performance of these methods is limited by the length of the sequence, and can not effectively model the long-term interest in a long period of time. Based on this observation, we propose a novel CTR model named denoising user-aware memory network (DUMN). Specifically, the framework: (i) proposes a feature purification module based on orthogonal mapping, which use the representation of explicit feedback to purify the representation of implicit feedback, and effectively denoise the implicit feedback; (ii) designs a user memory network to model the long-term interests in a fine-grained way by improving the memory network, which is ignored by the existing methods; and (iii) develops a preference-aware interactive representation component to fuse the long-term and short-term interests of users based on gating to understand the evolution of unbiased preferences of users. Extensive experiments on two real e-commerce user behavior datasets show that DUMN has a significant improvement over the state-of-the-art baselines. The code of DUMN model has been uploaded as an additional material.



rate research

Read More

173 - Yun He , Yin Zhang , Weiwen Liu 2019
User-generated item lists are popular on many platforms. Examples include video-based playlists on YouTube, image-based lists (orboards) on Pinterest, book-based lists on Goodreads, and answer-based lists on question-answer forums like Zhihu. As users create these lists, a common challenge is in identifying what items to curate next. Some lists are organized around particular genres or topics, while others are seemingly incoherent, reflecting individual preferences for what items belong together. Furthermore, this heterogeneity in item consistency may vary from platform to platform, and from sub-community to sub-community. Hence, this paper proposes a generalizable approach for user-generated item list continuation. Complementary to methods that exploit specific content patterns (e.g., as in song-based playlists that rely on audio features), the proposed approach models the consistency of item lists based on human curation patterns, and so can be deployed across a wide range of varying item types (e.g., videos, images, books). A key contribution is in intelligently combining two preference models via a novel consistency-aware gating network - a general user preference model that captures a users overall interests, and a current preference priority model that captures a users current (as of the most recent item) interests. In this way, the proposed consistency-aware recommender can dynamically adapt as user preferences evolve. Evaluation over four datasets(of songs, books, and answers) confirms these observations and demonstrates the effectiveness of the proposed model versus state-of-the-art alternatives. Further, all code and data are available at https://github.com/heyunh2015/ListContinuation_WSDM2020.
106 - Yu Wang , Xin Xin , Zaiqiao Meng 2021
Learning from implicit feedback is one of the most common cases in the application of recommender systems. Generally speaking, interacted examples are considered as positive while negative examples are sampled from uninteracted ones. However, noisy examples are prevalent in real-world implicit feedback. A noisy positive example could be interacted but it actually leads to negative user preference. A noisy negative example which is uninteracted because of unawareness of the user could also denote potential positive user preference. Conventional training methods overlook these noisy examples, leading to sub-optimal recommendation. In this work, we propose probabilistic and variational recommendation denoising for implicit feedback. Through an empirical study, we find that different models make relatively similar predictions on clean examples which denote the real user preference, while the predictions on noisy examples vary much more across different models. Motivated by this observation, we propose denoising with probabilistic inference (DPI) which aims to minimize the KL-divergence between the real user preference distributions parameterized by two recommendation models while maximize the likelihood of data observation. We then show that DPI recovers the evidence lower bound of an variational auto-encoder when the real user preference is considered as the latent variables. This leads to our second learning framework denoising with variational autoencoder (DVAE). We employ the proposed DPI and DVAE on four state-of-the-art recommendation models and conduct experiments on three datasets. Experimental results demonstrate that DPI and DVAE significantly improve recommendation performance compared with normal training and other denoising methods. Codes will be open-sourced.
102 - Kai Zhang , Hao Qian , Qi Liu 2021
Recent studies in recommender systems have managed to achieve significantly improved performance by leveraging reviews for rating prediction. However, despite being extensively studied, these methods still suffer from some limitations. First, previous studies either encode the document or extract latent sentiment via neural networks, which are difficult to interpret the sentiment of reviewers intuitively. Second, they neglect the personalized interaction of reviews with user/item, i.e., each review has different contributions when modeling the sentiment preference of user/item. To remedy these issues, we propose a Sentiment-aware Interactive Fusion Network (SIFN) for review-based item recommendation. Specifically, we first encode user/item reviews via BERT and propose a light-weighted sentiment learner to extract semantic features of each review. Then, we propose a sentiment prediction task that guides the sentiment learner to extract sentiment-aware features via explicit sentiment labels. Finally, we design a rating prediction task that contains a rating learner with an interactive and fusion module to fuse the identity (i.e., user and item ID) and each review representation so that various interactive features can synergistically influence the final rating score. Experimental results on five real-world datasets demonstrate that the proposed model is superior to state-of-the-art models.
Recommendation reason generation, aiming at showing the selling points of products for customers, plays a vital role in attracting customers attention as well as improving user experience. A simple and effective way is to extract keywords directly from the knowledge-base of products, i.e., attributes or title, as the recommendation reason. However, generating recommendation reason from product knowledge doesnt naturally respond to users interests. Fortunately, on some E-commerce websites, there exists more and more user-generated content (user-content for short), i.e., product question-answering (QA) discussions, which reflect user-cared aspects. Therefore, in this paper, we consider generating the recommendation reason by taking into account not only the product attributes but also the customer-generated product QA discussions. In reality, adequate user-content is only possible for the most popular commodities, whereas large sums of long-tail products or new products cannot gather a sufficient number of user-content. To tackle this problem, we propose a user-inspired multi-source posterior transformer (MSPT), which induces the model reflecting the users interests with a posterior multiple QA discussions module, and generating recommendation reasons containing the product attributes as well as the user-cared aspects. Experimental results show that our model is superior to traditional generative models. Additionally, the analysis also shows that our model can focus more on the user-cared aspects than baselines.
Both reviews and user-item interactions (i.e., rating scores) have been widely adopted for user rating prediction. However, these existing techniques mainly extract the latent representations for users and items in an independent and static manner. That is, a single static feature vector is derived to encode her preference without considering the particular characteristics of each candidate item. We argue that this static encoding scheme is difficult to fully capture the users preference. In this paper, we propose a novel context-aware user-item representation learning model for rating prediction, named CARL. Namely, CARL derives a joint representation for a given user-item pair based on their individual latent features and latent feature interactions. Then, CARL adopts Factorization Machines to further model higher-order feature interactions on the basis of the user-item pair for rating prediction. Specifically, two separate learning components are devised in CARL to exploit review data and interaction data respectively: review-based feature learning and interaction-based feature learning. In review-based learning component, with convolution operations and attention mechanism, the relevant features for a user-item pair are extracted by jointly considering their corresponding reviews. However, these features are only review-driven and may not be comprehensive. Hence, interaction-based learning component further extracts complementary features from interaction data alone, also on the basis of user-item pairs. The final rating score is then derived with a dynamic linear fusion mechanism. Experiments on five real-world datasets show that CARL achieves significantly better rating prediction accuracy than existing state-of-the-art alternatives. Also, with attention mechanism, we show that the relevant information in reviews can be highlighted to interpret the rating prediction.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا