No Arabic abstract
Visually-aware recommendation on E-commerce platforms aims to leverage visual information of items to predict a users preference. It is commonly observed that users attention to visual features does not always reflect the real preference. Although a user may click and view an item in light of a visual satisfaction of their expectations, a real purchase does not always occur due to the unsatisfaction of other essential features (e.g., brand, material, price). We refer to the reason for such a visually related interaction deviating from the real preference as a visual bias. Existing visually-aware models make use of the visual features as a separate collaborative signal similarly to other features to directly predict the users preference without considering a potential bias, which gives rise to a visually biased recommendation. In this paper, we derive a causal graph to identify and analyze the visual bias of these existing methods. In this causal graph, the visual feature of an item acts as a mediator, which could introduce a spurious relationship between the user and the item. To eliminate this spurious relationship that misleads the prediction of the users real preference, an intervention and a counterfactual inference are developed over the mediator. Particularly, the Total Indirect Effect is applied for a debiased prediction during the testing phase of the model. This causal inference framework is model agnostic such that it can be integrated into the existing methods. Furthermore, we propose a debiased visually-aware recommender system, denoted as CausalRec to effectively retain the supportive significance of the visual information and remove the visual bias. Extensive experiments are conducted on eight benchmark datasets, which shows the state-of-the-art performance of CausalRec and the efficacy of debiasing.
Understanding users interactions with highly subjective content---like artistic images---is challenging due to the complex semantics that guide our preferences. On the one hand one has to overcome `standard recommender systems challenges, such as dealing with large, sparse, and long-tailed datasets. On the other, several new challenges present themselves, such as the need to model content in terms of its visual appearance, or even social dynamics, such as a preference toward a particular artist that is independent of the art they create. In this paper we build large-scale recommender systems to model the dynamics of a vibrant digital art community, Behance, consisting of tens of millions of interactions (clicks and `appreciates) of users toward digital art. Methodologically, our main contributions are to model (a) rich content, especially in terms of its visual appearance; (b) temporal dynamics, in terms of how users prefer `visually consistent content within and across sessions; and (c) social dynamics, in terms of how users exhibit preferences both towards certain art styles, as well as the artists themselves.
Recommender system usually faces popularity bias issues: from the data perspective, items exhibit uneven (long-tail) distribution on the interaction frequency; from the method perspective, collaborative filtering methods are prone to amplify the bias by over-recommending popular items. It is undoubtedly critical to consider popularity bias in recommender systems, and existing work mainly eliminates the bias effect. However, we argue that not all biases in the data are bad -- some items demonstrate higher popularity because of their better intrinsic quality. Blindly pursuing unbiased learning may remove the beneficial patterns in the data, degrading the recommendation accuracy and user satisfaction. This work studies an unexplored problem in recommendation -- how to leverage popularity bias to improve the recommendation accuracy. The key lies in two aspects: how to remove the bad impact of popularity bias during training, and how to inject the desired popularity bias in the inference stage that generates top-K recommendations. This questions the causal mechanism of the recommendation generation process. Along this line, we find that item popularity plays the role of confounder between the exposed items and the observed interactions, causing the bad effect of bias amplification. To achieve our goal, we propose a new training and inference paradigm for recommendation named Popularity-bias Deconfounding and Adjusting (PDA). It removes the confounding popularity bias in model training and adjusts the recommendation score with desired popularity bias via causal intervention. We demonstrate the new paradigm on latent factor model and perform extensive experiments on three real-world datasets. Empirical studies validate that the deconfounded training is helpful to discover user real interests and the inference adjustment with popularity bias could further improve the recommendation accuracy.
State-of-the-art recommender systems have the ability to generate high-quality recommendations, but usually cannot provide intuitive explanations to humans due to the usage of black-box prediction models. The lack of transparency has highlighted the critical importance of improving the explainability of recommender systems. In this paper, we propose to extract causal rules from the user interaction history as post-hoc explanations for the black-box sequential recommendation mechanisms, whilst maintain the predictive accuracy of the recommendation model. Our approach firstly achieves counterfactual examples with the aid of a perturbation model, and then extracts personalized causal relationships for the recommendation model through a causal rule mining algorithm. Experiments are conducted on several state-of-the-art sequential recommendation models and real-world datasets to verify the performance of our model on generating causal explanations. Meanwhile, We evaluate the discovered causal explanations in terms of quality and fidelity, which show that compared with conventional association rules, causal rules can provide personalized and more effective explanations for the behavior of black-box recommendation models.
Graph Convolution Networks (GCNs) manifest great potential in recommendation. This is attributed to their capability on learning good user and item embeddings by exploiting the collaborative signals from the high-order neighbors. Like other GCN models, the GCN based recommendation models also suffer from the notorious over-smoothing problem - when stacking more layers, node embeddings become more similar and eventually indistinguishable, resulted in performance degradation. The recently proposed LightGCN and LR-GCN alleviate this problem to some extent, however, we argue that they overlook an important factor for the over-smoothing problem in recommendation, that is, high-order neighboring users with no common interests of a user can be also involved in the users embedding learning in the graph convolution operation. As a result, the multi-layer graph convolution will make users with dissimilar interests have similar embeddings. In this paper, we propose a novel Interest-aware Message-Passing GCN (IMP-GCN) recommendation model, which performs high-order graph convolution inside subgraphs. The subgraph consists of users with similar interests and their interacted items. To form the subgraphs, we design an unsupervised subgraph generation module, which can effectively identify users with common interests by exploiting both user feature and graph structure. To this end, our model can avoid propagating negative information from high-order neighbors into embedding learning. Experimental results on three large-scale benchmark datasets show that our model can gain performance improvement by stacking more layers and outperform the state-of-the-art GCN-based recommendation models significantly.
For better user satisfaction and business effectiveness, more and more attention has been paid to the sequence-based recommendation system, which is used to infer the evolution of users dynamic preferences, and recent studies have noticed that the evolution of users preferences can be better understood from the implicit and explicit feedback sequences. However, most of the existing recommendation techniques do not consider the noise contained in implicit feedback, which will lead to the biased representation of user interest and a suboptimal recommendation performance. Meanwhile, the existing methods utilize item sequence for capturing the evolution of user interest. The performance of these methods is limited by the length of the sequence, and can not effectively model the long-term interest in a long period of time. Based on this observation, we propose a novel CTR model named denoising user-aware memory network (DUMN). Specifically, the framework: (i) proposes a feature purification module based on orthogonal mapping, which use the representation of explicit feedback to purify the representation of implicit feedback, and effectively denoise the implicit feedback; (ii) designs a user memory network to model the long-term interests in a fine-grained way by improving the memory network, which is ignored by the existing methods; and (iii) develops a preference-aware interactive representation component to fuse the long-term and short-term interests of users based on gating to understand the evolution of unbiased preferences of users. Extensive experiments on two real e-commerce user behavior datasets show that DUMN has a significant improvement over the state-of-the-art baselines. The code of DUMN model has been uploaded as an additional material.