Do you want to publish a course? Click here

A White Paper on keV Sterile Neutrino Dark Matter

130   0   0.0 ( 0 )
 Added by Alexander Merle
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved - cosmology, astrophysics, nuclear, and particle physics - in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterile neutrino Dark Matter arising from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. The paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.



rate research

Read More

We review sterile neutrinos as possible Dark Matter candidates. After a short summary on the role of neutrinos in cosmology and particle physics, we give a comprehensive overview of the current status of the research on sterile neutrino Dark Matter. First we discuss the motivation and limits obtained through astrophysical observations. Second, we review different mechanisms of how sterile neutrino Dark Matter could have been produced in the early universe. Finally, we outline a selection of future laboratory searches for keV-scale sterile neutrinos, highlighting their experimental challenges and discovery potential.
Extending the Standard Model with three right-handed neutrinos and a simple QCD axion sector can account for neutrino oscillations, dark matter and baryon asymmetry; at the same time, it solves the strong CP problem, stabilizes the electroweak vacuum and can implement critical Higgs inflation (satisfying all current observational bounds). We perform here a general analysis of dark matter (DM) in such a model, which we call the $a u$MSM. Although critical Higgs inflation features a (quasi) inflection point of the inflaton potential we show that DM cannot receive a contribution from primordial black holes in the $a u$MSM. This leads to a multicomponent axion-sterile-neutrino DM and allows us to relate the axion parameters, such as the axion decay constant, to the neutrino parameters. We include several DM production mechanisms: the axion production via misalignment and decay of topological defects as well as the sterile-neutrino production through the resonant and non-resonant mechanisms and in the recently proposed CPT-symmetric universe.
This white paper addresses the hypothesis of light sterile neutrinos based on recent anomalies observed in neutrino experiments and the latest astrophysical data.
We study the phenomenology of a keV sterile neutrino in a supersymmetric model with $U(1)_R-$ lepton number in the light of a very recent observation of an X-ray line signal at around 3.5 keV, detected in the X-ray spectra of Andromeda galaxy and various galaxy clusters including the Perseus galaxy cluster. This model not only provides a small tree level mass to one of the active neutrinos but also renders a suitable warm dark matter candidate in the form of a sterile neutrino with negligible active-sterile mixing. Light neutrino masses and mixing can be explained once one-loop radiative corrections are taken into account. The scalar sector of this model can accommodate a Higgs boson with a mass of $sim$ 125 GeV. In this model gravitino is the lightest supersymmetric particle (LSP) and we also study the cosmological implications of this light gravitino with mass $sim mathcal O$(GeV).
We investigate a new method to search for keV-scale sterile neutrinos that could account for Dark Matter. Neutrinos trapped in our galaxy could be captured on stable $^{163}$Dy if their mass is greater than 2.83 keV. Two experimental realizations are studied, an integral counting of $^{163}$Ho atoms in dysprosium-rich ores and a real-time measurement of the emerging electron spectrum in a dysprosium-based detector. The capture rates are compared to the solar neutrino and radioactive backgrounds. An integral counting experiment using several kilograms of $^{163}$Dy could reach a sensitivity for the sterile-to-active mixing angle $sin^2theta_{e4}$ of $10^{-5}$ significantly exceeding current laboratory limits. Mixing angles as low as $sin^2theta_{e4} sim 10^{-7}$ / $rm m_{^{163}rm Dy}rm{(ton)}$ could possibly be explored with a real-time experiment.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا