Do you want to publish a course? Click here

Sterile Neutrino Dark Matter

85   0   0.0 ( 0 )
 Added by Marco Drewes
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We review sterile neutrinos as possible Dark Matter candidates. After a short summary on the role of neutrinos in cosmology and particle physics, we give a comprehensive overview of the current status of the research on sterile neutrino Dark Matter. First we discuss the motivation and limits obtained through astrophysical observations. Second, we review different mechanisms of how sterile neutrino Dark Matter could have been produced in the early universe. Finally, we outline a selection of future laboratory searches for keV-scale sterile neutrinos, highlighting their experimental challenges and discovery potential.



rate research

Read More

Extending the Standard Model with three right-handed neutrinos and a simple QCD axion sector can account for neutrino oscillations, dark matter and baryon asymmetry; at the same time, it solves the strong CP problem, stabilizes the electroweak vacuum and can implement critical Higgs inflation (satisfying all current observational bounds). We perform here a general analysis of dark matter (DM) in such a model, which we call the $a u$MSM. Although critical Higgs inflation features a (quasi) inflection point of the inflaton potential we show that DM cannot receive a contribution from primordial black holes in the $a u$MSM. This leads to a multicomponent axion-sterile-neutrino DM and allows us to relate the axion parameters, such as the axion decay constant, to the neutrino parameters. We include several DM production mechanisms: the axion production via misalignment and decay of topological defects as well as the sterile-neutrino production through the resonant and non-resonant mechanisms and in the recently proposed CPT-symmetric universe.
We consider the possibility of the lightest sterile neutrino dark matter which has dipole interaction with heavier sterile neutrinos. The lifetime can be long enough to be a dark matter candidate without violating other constraints and the correct amount of relic abundance can be produced in the early Universe. We find that a sterile neutrino with the mass of around MeV and the dimension-five non-renormalisable dipole interaction suppressed by $Lambda_5 gtrsim 10^{15}$ GeV can be a good candidate of dark matter, while heavier sterile neutrinos with masses of the order of GeV can explain the active neutrino oscillations.
$SU(2)_L times SU(2)_R$ gauge symmetry requires three right-handed neutrinos ($ N _i $), one of which, $N_1$, can be sufficiently stable to be dark matter. In the early universe, $ W _R $ exchange with the Standard Model thermal bath keeps the right-handed neutrinos in thermal equilibrium at high temperatures. $N_1$ can make up all of dark matter if they freeze-out while relativistic and are mildly diluted by subsequent decays of a long-lived and heavier right-handed neutrino, $N_2$. We systematically study this parameter space, constraining the symmetry breaking scale of $SU(2)_R$ and the mass of $N_1$ to a triangle in the $(v_R,M_1)$ plane, with $v_R = (10^6 - 3 times 10^{12})$ GeV and $M_1 = (2, {rm keV} - 1 , {rm MeV)}$. Much of this triangle can be probed by signals of warm dark matter, especially if leptogenesis from $N_2$ decay yields the observed baryon asymmetry. The minimal value of $v_R$ is increased to $10^8 , {rm GeV}$ for doublet breaking of $SU(2)_R$, and further to $10^9 , {rm GeV}$ if leptogenesis occurs via $N_2$ decay, while the upper bound on $M_1$ is reduced to 100 keV. In addition, there is a component of hot $N_1$ dark matter resulting from the late decay of $N_2 rightarrow N_1 ell^+ ell^-$ that can be probed by future cosmic microwave background observations. Interestingly, the range of $v_R$ allows both precision gauge coupling unification and the Higgs Parity understanding of the vanishing of the Standard Model Higgs quartic at scale $v_R$. Finally, we study freeze-in production of $N_1$ dark matter via the $W_R$ interaction, which allows a much wider range of $(v_R,M_1)$.
We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved - cosmology, astrophysics, nuclear, and particle physics - in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterile neutrino Dark Matter arising from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. The paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.
We study a simple model of thermal dark matter annihilating to standard model neutrinos via the neutrino portal. A (pseudo-)Dirac sterile neutrino serves as a mediator between the visible and the dark sectors, while an approximate lepton number symmetry allows for a large neutrino Yukawa coupling and, in turn, efficient dark matter annihilation. The dark sector consists of two particles, a Dirac fermion and complex scalar, charged under a symmetry that ensures the stability of the dark matter. A generic prediction of the model is a sterile neutrino with a large active-sterile mixing angle that decays primarily invisibly. We derive existing constraints and future projections from direct detection experiments, colliders, rare meson and tau decays, electroweak precision tests, and small scale structure observations. Along with these phenomenological tests, we investigate the consequences of perturbativity and scalar mass fine tuning on the model parameter space. A simple, conservative scheme to confront the various tests with the thermal relic target is outlined, and we demonstrate that much of the cosmologically-motivated parameter space is already constrained. We also identify new probes of this scenario such as multi-body kaon decays and Drell-Yan production of $W$ bosons at the LHC.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا