Do you want to publish a course? Click here

Axion-Sterile-Neutrino Dark Matter

83   0   0.0 ( 0 )
 Added by Alberto Salvio
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Extending the Standard Model with three right-handed neutrinos and a simple QCD axion sector can account for neutrino oscillations, dark matter and baryon asymmetry; at the same time, it solves the strong CP problem, stabilizes the electroweak vacuum and can implement critical Higgs inflation (satisfying all current observational bounds). We perform here a general analysis of dark matter (DM) in such a model, which we call the $a u$MSM. Although critical Higgs inflation features a (quasi) inflection point of the inflaton potential we show that DM cannot receive a contribution from primordial black holes in the $a u$MSM. This leads to a multicomponent axion-sterile-neutrino DM and allows us to relate the axion parameters, such as the axion decay constant, to the neutrino parameters. We include several DM production mechanisms: the axion production via misalignment and decay of topological defects as well as the sterile-neutrino production through the resonant and non-resonant mechanisms and in the recently proposed CPT-symmetric universe.



rate research

Read More

We review sterile neutrinos as possible Dark Matter candidates. After a short summary on the role of neutrinos in cosmology and particle physics, we give a comprehensive overview of the current status of the research on sterile neutrino Dark Matter. First we discuss the motivation and limits obtained through astrophysical observations. Second, we review different mechanisms of how sterile neutrino Dark Matter could have been produced in the early universe. Finally, we outline a selection of future laboratory searches for keV-scale sterile neutrinos, highlighting their experimental challenges and discovery potential.
We consider the possibility of the lightest sterile neutrino dark matter which has dipole interaction with heavier sterile neutrinos. The lifetime can be long enough to be a dark matter candidate without violating other constraints and the correct amount of relic abundance can be produced in the early Universe. We find that a sterile neutrino with the mass of around MeV and the dimension-five non-renormalisable dipole interaction suppressed by $Lambda_5 gtrsim 10^{15}$ GeV can be a good candidate of dark matter, while heavier sterile neutrinos with masses of the order of GeV can explain the active neutrino oscillations.
$SU(2)_L times SU(2)_R$ gauge symmetry requires three right-handed neutrinos ($ N _i $), one of which, $N_1$, can be sufficiently stable to be dark matter. In the early universe, $ W _R $ exchange with the Standard Model thermal bath keeps the right-handed neutrinos in thermal equilibrium at high temperatures. $N_1$ can make up all of dark matter if they freeze-out while relativistic and are mildly diluted by subsequent decays of a long-lived and heavier right-handed neutrino, $N_2$. We systematically study this parameter space, constraining the symmetry breaking scale of $SU(2)_R$ and the mass of $N_1$ to a triangle in the $(v_R,M_1)$ plane, with $v_R = (10^6 - 3 times 10^{12})$ GeV and $M_1 = (2, {rm keV} - 1 , {rm MeV)}$. Much of this triangle can be probed by signals of warm dark matter, especially if leptogenesis from $N_2$ decay yields the observed baryon asymmetry. The minimal value of $v_R$ is increased to $10^8 , {rm GeV}$ for doublet breaking of $SU(2)_R$, and further to $10^9 , {rm GeV}$ if leptogenesis occurs via $N_2$ decay, while the upper bound on $M_1$ is reduced to 100 keV. In addition, there is a component of hot $N_1$ dark matter resulting from the late decay of $N_2 rightarrow N_1 ell^+ ell^-$ that can be probed by future cosmic microwave background observations. Interestingly, the range of $v_R$ allows both precision gauge coupling unification and the Higgs Parity understanding of the vanishing of the Standard Model Higgs quartic at scale $v_R$. Finally, we study freeze-in production of $N_1$ dark matter via the $W_R$ interaction, which allows a much wider range of $(v_R,M_1)$.
We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved - cosmology, astrophysics, nuclear, and particle physics - in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterile neutrino Dark Matter arising from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. The paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.
Axions are hypothetical particles that may explain the observed dark matter (DM) density and the non-observation of a neutron electric dipole moment. An increasing number of axion laboratory searches are underway worldwide, but these efforts are made difficult by the fact that the axion mass is largely unconstrained. If the axion is generated after inflation there is a unique mass that gives rise to the observed DM abundance; due to nonlinearities and topological defects known as strings, computing this mass accurately has been a challenge for four decades. Recent works, making use of large static lattice simulations, have led to largely disparate predictions for the axion mass, spanning the range from 25 microelectronvolts to over 500 microelectronvolts. In this work we show that adaptive mesh refinement (AMR) simulations are better suited for axion cosmology than the previously-used static lattice simulations because only the string cores require high spatial resolution. Using dedicated AMR simulations we obtain an over three order of magnitude leap in dynamic range and provide evidence that axion strings radiate their energy with a scale-invariant spectrum, to within $sim$5% precision, leading to a mass prediction in the range (40,180) microelectronvolts.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا