We investigate a new method to search for keV-scale sterile neutrinos that could account for Dark Matter. Neutrinos trapped in our galaxy could be captured on stable $^{163}$Dy if their mass is greater than 2.83 keV. Two experimental realizations are studied, an integral counting of $^{163}$Ho atoms in dysprosium-rich ores and a real-time measurement of the emerging electron spectrum in a dysprosium-based detector. The capture rates are compared to the solar neutrino and radioactive backgrounds. An integral counting experiment using several kilograms of $^{163}$Dy could reach a sensitivity for the sterile-to-active mixing angle $sin^2theta_{e4}$ of $10^{-5}$ significantly exceeding current laboratory limits. Mixing angles as low as $sin^2theta_{e4} sim 10^{-7}$ / $rm m_{^{163}rm Dy}rm{(ton)}$ could possibly be explored with a real-time experiment.
We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved - cosmology, astrophysics, nuclear, and particle physics - in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterile neutrino Dark Matter arising from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. The paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.
We review sterile neutrinos as possible Dark Matter candidates. After a short summary on the role of neutrinos in cosmology and particle physics, we give a comprehensive overview of the current status of the research on sterile neutrino Dark Matter. First we discuss the motivation and limits obtained through astrophysical observations. Second, we review different mechanisms of how sterile neutrino Dark Matter could have been produced in the early universe. Finally, we outline a selection of future laboratory searches for keV-scale sterile neutrinos, highlighting their experimental challenges and discovery potential.
Extending the Standard Model with three right-handed neutrinos and a simple QCD axion sector can account for neutrino oscillations, dark matter and baryon asymmetry; at the same time, it solves the strong CP problem, stabilizes the electroweak vacuum and can implement critical Higgs inflation (satisfying all current observational bounds). We perform here a general analysis of dark matter (DM) in such a model, which we call the $a u$MSM. Although critical Higgs inflation features a (quasi) inflection point of the inflaton potential we show that DM cannot receive a contribution from primordial black holes in the $a u$MSM. This leads to a multicomponent axion-sterile-neutrino DM and allows us to relate the axion parameters, such as the axion decay constant, to the neutrino parameters. We include several DM production mechanisms: the axion production via misalignment and decay of topological defects as well as the sterile-neutrino production through the resonant and non-resonant mechanisms and in the recently proposed CPT-symmetric universe.
We report the results of a search for an emission line from radiatively decaying dark matter in the Chandra X-ray Observatory spectrum of the ultra-faint dwarf spheroidal galaxy Willman 1. 99% confidence line flux upper limits over the 0.4-7 keV Chandra bandpass are derived and mapped to an allowed region in the sterile neutrino mass-mixing angle plane that is consistent with recent constraints from Suzaku X-ray Observatory and Chandra observations of the Ursa Minor and Draco dwarf spheroidals. A significant excess to the continuum, detected by fitting the particle-background-subtracted source spectrum, indicates the presence of a narrow emission feature with energy 2.51 +/- 0.07 (0.11) keV and flux [3.53 +/- 1.95 (2.77)] X 10^(-6) photons/cm^2/s at 68% (90%) confidence. Interpreting this as an emission line from sterile neutrino radiative decay, we derive the corresponding allowed range of sterile neutrino mass and mixing angle using two approaches. The first assumes that dark matter is solely composed of sterile neutrinos, and the second relaxes that requirement. The feature is consistent with the sterile neutrino mass of 5.0 +/- 0.2 keV and a mixing angle in a narrow range for which neutrino oscillations can produce all of the dark matter and for which sterile neutrino emission from the cooling neutron stars can explain pulsar kicks, thus bolstering both the statistical and physical significance of our measurement.
We consider the possibility of the lightest sterile neutrino dark matter which has dipole interaction with heavier sterile neutrinos. The lifetime can be long enough to be a dark matter candidate without violating other constraints and the correct amount of relic abundance can be produced in the early Universe. We find that a sterile neutrino with the mass of around MeV and the dimension-five non-renormalisable dipole interaction suppressed by $Lambda_5 gtrsim 10^{15}$ GeV can be a good candidate of dark matter, while heavier sterile neutrinos with masses of the order of GeV can explain the active neutrino oscillations.
T. Lasserre
,K. Altenmueller
,M. Cribier
.
(2016)
.
"Direct Search for keV Sterile Neutrino Dark Matter with a Stable Dysprosium Target"
.
Thierry Lasserre
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا