No Arabic abstract
We employ a semi-classical Langevin approach to study current-induced atomic dynamics in a partially dehydrogenated armchair graphene nanoribbon. All parameters are obtained from density functional theory. The dehydrogenated carbon dimers behave as effective impurities, whose motion decouples from the rest of carbon atoms. The electrical current can couple the dimer motion in a coherent fashion. The coupling, which is mediated by nonconservative and pseudo-magnetic current-induced forces, change the atomic dynamics, and thereby show their signature in this simple system. We study the atomic dynamics and current-induced vibrational instabilities using a simplified eigen-mode analysis.Our study shows that the armchair nanoribbon serves as a possible testbed for probing the current-induced forces.
One-dimensional diffusion of Co ad-atoms on graphene nanoribbons has been induced and investigated by means of scanning tunnelling microscopy (STM). To this end, the nanoribbons and the Co ad-atoms have been imaged before and after injecting current pulses into the nanoribbons, with the STM tip in direct contact with the ribbon. We observe current-induced motion of the Co atoms along the nanoribbons, which is approximately described by a distribution expected for a thermally activated one-dimensional random walk. This indicates that the nanoribbons reach temperatures far beyond 100 K, which is well above the temperature of the underlying Au substrate. This model system can be developed further for the study of electromigration at the single-atom level.
We investigate theoretically the electronic transport properties in narrow graphene ribbons with an adatom-induced defect. It is found that the lowest conductance step of a metallic graphene nanoribbon may develop a dip even down to zero at certain values of the Fermi energy due to the defect. Accompanying the occurrence of the conductance dip, a loop current develops around the defect. We show how the properties of the conductance dip depend on the parameters of the defect, such as the relative position and severity of the defect as well as the width and edges of the graphene ribbons. In particular, for metallic armchair-edges graphene nanoribbons, whether the conductance dip appears or not, they can be controlled by choosing the position of the single defect.
In the phenomenon of electromagnetically induced transparency1 (EIT) of a three-level atomic system, the linear susceptibility at the dipole-allowed transition is canceled through destructive interference of the direct transition and an indirect transition pathway involving a meta-stable level, enabled by optical pumping. EIT not only leads to light transmission at otherwise opaque atomic transition frequencies, but also results in the slowing of light group velocity and enhanced optical nonlinearity. In this letter, we report an analogous behavior, denoted as phonon-induced transparency (PIT), in AB-stacked bilayer graphene nanoribbons. Here, light absorption due to the plasmon excitation is suppressed in a narrow window due to the coupling with the infrared active {Gamma}-point optical phonon, whose function here is similar to that of the meta-stable level in EIT of atomic systems. We further show that PIT in bilayer graphene is actively tunable by electrostatic gating, and estimate a maximum slow light factor of around 500 at the phonon frequency of 1580 cm-1, based on the measured spectra. Our demonstration opens an avenue for the exploration of few-photon non-linear optics and slow light in this novel two-dimensional material, without external optical pumping and at room temperature.
We investigate the effects of homogeneous and inhomogeneous deformations and edge disorder on the conductance of gated graphene nanoribbons. Under increasing homogeneous strain the conductance of such devices initially decreases before it acquires a resonance structure, and finally becomes completely suppressed at larger strain. Edge disorder induces mode mixing in the contact regions, which can restore the conductance to its ballistic value. The valley-antisymmetric pseudo-magnetic field induced by inhomogeneous deformations leads to the formation of additional resonance states, which either originate from the coupling into Fabry-Perot states that extend through the system, or from the formation of states that are localized near the contacts, where the pseudo-magnetic field is largest. In particular, the n=0 pseudo-Landau level manifests itself via two groups of conductance resonances close to the charge neutrality point.
We study the effects of the structural corrugation or rippling on the electronic properties of undoped armchair graphene nanoribbons (AGNR). First, reanalyzing the single corrugated graphene layer we find that the two inequivalent Dirac points (DP), move away one from the other. Otherwise, the Fermi velocity decrease by increasing rippling. Regarding the AGNRs, whose metallic behavior depends on their width, we analyze in particular the case of the zero gap band-structure AGNRs. By solving the Dirac equation with the adequate boundary condition we show that due to the shifting of the DP a gap opens in the spectra. This gap scale with the square of the rate between the high and the wavelength of the deformation. We confirm this prediction by exact numerical solution of the finite width rippled AGNR. Moreover, we find that the quantum conductance, calculated by the non equilibrium Greens function technique vanish when the gap open. The main conclusion of our results is that a conductance gap should appear for all undoped corrugated AGNR independent of their width.