Do you want to publish a course? Click here

Strain-induced modifications of transport in gated graphene nanoribbons

137   0   0.0 ( 0 )
 Added by Diana Cosma
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the effects of homogeneous and inhomogeneous deformations and edge disorder on the conductance of gated graphene nanoribbons. Under increasing homogeneous strain the conductance of such devices initially decreases before it acquires a resonance structure, and finally becomes completely suppressed at larger strain. Edge disorder induces mode mixing in the contact regions, which can restore the conductance to its ballistic value. The valley-antisymmetric pseudo-magnetic field induced by inhomogeneous deformations leads to the formation of additional resonance states, which either originate from the coupling into Fabry-Perot states that extend through the system, or from the formation of states that are localized near the contacts, where the pseudo-magnetic field is largest. In particular, the n=0 pseudo-Landau level manifests itself via two groups of conductance resonances close to the charge neutrality point.



rate research

Read More

The effects of Coulomb interactions on the electronic properties of bilayer graphene nanoribbons (BGNs) covered by a gate electrode are studied theoretically. The electron density distribution and the potential profile are calculated self-consistently within the Hartree approximation. A comparison to their single-particle counterparts reveals the effects of interactions and screening. Due to the finite width of the nanoribbon in combination with electronic repulsion, the gate-induced electrons tend to accumulate along the BGN edges where the potential assumes a sharp triangular shape. This has a profound effect on the energy gap between electron and hole bands, which depends nonmonotonously on the gate voltage and collapses at intermediate electric fields. We interpret this behavior in terms of interaction-induced warping of the energy dispersion.
We report an electron transport study of lithographically fabricated graphene nanoribbons of various widths and lengths at different temperatures. At the charge neutrality point, a length-independent transport gap forms whose size is inversely proportional to the width. In this gap, electron is localized, and charge transport exhibits a transition between simple thermally activated behavior at higher temperatures and a variable range hopping at lower temperatures. By varying the geometric capacitance through the addition of top gates, we find that charging effects constitute a significant portion of the activation energy.
We have developed the combination of an etching and deposition technique that enables the fabrication of locally gated graphene nanostructures of arbitrary design. Employing this method, we have fabricated graphene nanoconstrictions with local tunable transmission and characterized their electronic properties. An order of magnitude enhanced gate efficiency is achieved adopting the local gate geometry with thin dielectric gate oxide. A complete turn off of the device is demonstrated as a function of the local gate voltage. Such strong suppression of device conductance was found to be due to both quantum confinement and Coulomb blockade effects in the constricted graphene nanostructures.
We present measurements on side gated graphene constrictions of different geometries. We characterize the transport gap by its width in back gate voltage and compare this to an analysis based on Coulomb blockade measurements of localized states. We study the effect of an applied side gate voltage on the transport gap and show that high side gate voltages lift the suppression of the conductance. Finally we study the effect of an applied magnetic field and demonstrate the presence of edge states in the constriction.
In graphene nanoribbons (GNRs), the lateral confinement of charge carriers opens a band gap, the key feature to enable novel graphene-based electronics. Successful synthesis of GNRs has triggered efforts to realize field-effect transistors (FETs) based on single ribbons. Despite great progress, reliable and reproducible fabrication of single-ribbon FETs is still a challenge that impedes applications and the understanding of the charge transport. Here, we present reproducible fabrication of armchair GNR-FETs based on a network of nanoribbons and analyze the charge transport mechanism using nine-atom wide and, in particular, five-atom-wide GNRs with unprecedented conductivity. We show formation of reliable Ohmic contacts and a yield of functional FETs close to unity by lamination of GNRs on the electrodes. Modeling the charge carrier transport in the networks reveals that this process is governed by inter-ribbon hopping mediated by nuclear tunneling, with a hopping length comparable to the physical length of the GNRs. Furthermore, we demonstrate that nuclear tunneling is a general charge transport characteristic of the GNR networks by using two different GNRs. Overcoming the challenge of low-yield single-ribbon transistors by the networks and identifying the corresponding charge transport mechanism puts GNR-based electronics in a new perspective.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا