Do you want to publish a course? Click here

Quantum blockade and loop current induced by a single lattice defect in graphene nanoribbons

230   0   0.0 ( 0 )
 Added by Jie-Yun Yan
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate theoretically the electronic transport properties in narrow graphene ribbons with an adatom-induced defect. It is found that the lowest conductance step of a metallic graphene nanoribbon may develop a dip even down to zero at certain values of the Fermi energy due to the defect. Accompanying the occurrence of the conductance dip, a loop current develops around the defect. We show how the properties of the conductance dip depend on the parameters of the defect, such as the relative position and severity of the defect as well as the width and edges of the graphene ribbons. In particular, for metallic armchair-edges graphene nanoribbons, whether the conductance dip appears or not, they can be controlled by choosing the position of the single defect.



rate research

Read More

484 - F. Sols , F. Guinea , 2007
We propose that recent transport experiments revealing the existence of an energy gap in graphene nanoribbons may be understood in terms of Coulomb blockade. Electron interactions play a decisive role at the quantum dots which form due to the presence of necks arising from the roughness of the graphene edge. With the average transmission as the only fitting parameter, our theory shows good agreement with the experimental data.
We employ a semi-classical Langevin approach to study current-induced atomic dynamics in a partially dehydrogenated armchair graphene nanoribbon. All parameters are obtained from density functional theory. The dehydrogenated carbon dimers behave as effective impurities, whose motion decouples from the rest of carbon atoms. The electrical current can couple the dimer motion in a coherent fashion. The coupling, which is mediated by nonconservative and pseudo-magnetic current-induced forces, change the atomic dynamics, and thereby show their signature in this simple system. We study the atomic dynamics and current-induced vibrational instabilities using a simplified eigen-mode analysis.Our study shows that the armchair nanoribbon serves as a possible testbed for probing the current-induced forces.
We study the effects of the structural corrugation or rippling on the electronic properties of undoped armchair graphene nanoribbons (AGNR). First, reanalyzing the single corrugated graphene layer we find that the two inequivalent Dirac points (DP), move away one from the other. Otherwise, the Fermi velocity decrease by increasing rippling. Regarding the AGNRs, whose metallic behavior depends on their width, we analyze in particular the case of the zero gap band-structure AGNRs. By solving the Dirac equation with the adequate boundary condition we show that due to the shifting of the DP a gap opens in the spectra. This gap scale with the square of the rate between the high and the wavelength of the deformation. We confirm this prediction by exact numerical solution of the finite width rippled AGNR. Moreover, we find that the quantum conductance, calculated by the non equilibrium Greens function technique vanish when the gap open. The main conclusion of our results is that a conductance gap should appear for all undoped corrugated AGNR independent of their width.
One-dimensional diffusion of Co ad-atoms on graphene nanoribbons has been induced and investigated by means of scanning tunnelling microscopy (STM). To this end, the nanoribbons and the Co ad-atoms have been imaged before and after injecting current pulses into the nanoribbons, with the STM tip in direct contact with the ribbon. We observe current-induced motion of the Co atoms along the nanoribbons, which is approximately described by a distribution expected for a thermally activated one-dimensional random walk. This indicates that the nanoribbons reach temperatures far beyond 100 K, which is well above the temperature of the underlying Au substrate. This model system can be developed further for the study of electromigration at the single-atom level.
It is generally believed that a point defect in graphene gives rise to an impurity state at zero energy and causes a sharp peak in the local density of states near the defect site. We revisit the defect problem in graphene and find the general consensus incorrect. By both analytic and numeric methods, we show that the contribution to the local density of states from the impurity state vanishes in the thermodynamic limit. Instead, the pronounced peak of the zero-bias anomaly is a power-law singularity $1/|E|$ from infinite resonant peaks in the low-energy regime induced by the defect. Our finding shows that the peak shall be viewed as a collective phenomenon rather than a single impurity state in previous studies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا