No Arabic abstract
Light emitted from single-mode semiconductor lasers generally has large divergence angles, and high numerical aperture lenses are required for beam collimation. Visible and near infrared lasers are collimated using aspheric glass or plastic lenses, yet collimation of mid-infrared quantum cascade lasers typically requires more costly aspheric lenses made of germanium, chalcogenide compounds, or other infrared-transparent materials. Here we report mid-infrared dielectric metasurface flat lenses that efficiently collimate the output beam of single-mode quantum cascade lasers. The metasurface lenses are composed of amorphous silicon posts on a flat sapphire substrate and can be fabricated at low cost using a single step conventional UV binary lithography. Mid-infrared radiation from a 4.8 $mu$m distributed-feedback quantum cascade laser is collimated using a polarization insensitive metasurface lens with 0.86 numerical aperture and 79% transmission efficiency. The collimated beam has a half divergence angle of 0.36$^circ$ and beam quality factor of $M^2$=1.02.
We designed and simulated freestanding dielectric optical metasurfaces based on arrays of etched nanoholes in a silicon membrane. We showed $2pi$ phase control and high forward transmission at mid-infrared wavelengths by tuning the dimensions of the holes. We also identified the mechanisms responsible for high forward scattering efficiency and showed that these conditions are connected with the well-known Kerker conditions already proposed for isolated scatterers. A beam deflector was designed and optimized through sequential particle swarm and gradient descent optimization to maximize transmission efficiency and reduce unwanted grating orders. Such freestanding silicon nanohole array metasurfaces are promising for the realization of silicon based mid-infrared optical elements.
The mid-wave infrared (MWIR) spectral region (3-5 {mu}m) is important to a vast variety of applications in imaging, sensing, spectroscopy, surgery, and optical communications. Efficient third-harmonic generation (THG), converting light from the MWIR range into the near-infrared, a region with mature optical detection and manipulation technologies, offers the opportunity to mitigate a commonly recognized limitation of current MWIR systems. In this work, we present the possibility of boosting THG in the MWIR through a metasurface design. Specifically, we demonstrate a 30-fold enhancement in a highly nonlinear phase change material Ge2Sb2Se4Te1 (GSST), by patterning arrays of subwavelength cylinders supporting a magnetic dipolar resonance. The unprecedented broadband transparency, large refractive index, and remarkably high nonlinear response, together with unique phase-change properties, make GSST-based metasurfaces an appealing solution for reconfigurable and ultra-compact nonlinear devices operating in the MWIR.
We report the unequivocal demonstration of mid-infrared mode-locked pulses from a semiconductor laser. The train of short pulses was generated by actively modulating the current and hence the optical gain in a small section of an edge-emitting quantum cascade laser (QCL). Pulses with pulse duration at full-width-at-half-maximum of about 3 ps and energy of 0.5 pJ were characterized using a second-order interferometric autocorrelation technique based on a nonlinear quantum well infrared photodetector. The mode-locking dynamics in the QCLs was modelled and simulated based on Maxwell-Bloch equations in an open two-level system. We anticipate our results to be a significant step toward a compact, electrically-pumped source generating ultrashort light pulses in the mid-infrared and terahertz spectral ranges.
Quantum cascade laser (QCL)-pumped molecular lasers (QPMLs) have recently been introduced as a new source of powerful (>1 mW), tunable (>1 THz), narrow-band (<10 kHz), continuous-wave terahertz radiation. The performance of these lasers depends critically on molecular collision physics, pump saturation, and on the design of the laser cavity. Using a validated three-level model that captures the essential collision and saturation behaviors of the QPML gas nitrous oxide (N2O),we explore how threshold pump power and output terahertz power depend on pump power, gas pressure, as well as on the diameter, length, and output-coupler transmissivity of a cylindrical cavity.The analysis indicates that maximum power occurs as pump saturation is minimized in a manner that depends much more sensitively on pressure than on cell diameter, length, or transmissivity. A near-optimal compact laser cavity can produce more than 10 mW of power tunable over frequencies above 1 THz when pumped by a multi-watt QCL.
We have developed terahertz frequency quantum cascade lasers that exploit a double-periodicity distributed feedback grating to control the emission frequency and the output beam direction independently. The spatial refractive index modulation of the gratings necessary to provide optical feedback at a fixed frequency and, simultaneously, a far-field emission pattern centered at controlled angles, was designed through use of an appropriate wavevector scattering model. Single mode THz emission at angles tuned by design between 0{deg} and 50{deg} was realized, leading to an original phase-matching approach, lithographically independent, for highly collimated THz QCLs.