Do you want to publish a course? Click here

Shell structure of potassium isotopes deduced from their magnetic moments

229   0   0.0 ( 0 )
 Added by Jasna Papuga
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

item[Background] Ground-state spins and magnetic moments are sensitive to the nuclear wave function, thus they are powerful probes to study the nuclear structure of isotopes far from stability. item[Purpose] Extend our knowledge about the evolution of the $1/2^+$ and $3/2^+$ states for K isotopes beyond the $N = 28$ shell gap. item[Method] High-resolution collinear laser spectroscopy on bunched atomic beams. item[Results] From measured hyperfine structure spectra of K isotopes, nuclear spins and magnetic moments of the ground states were obtained for isotopes from $N = 19$ up to $N = 32$. In order to draw conclusions about the composition of the wave functions and the occupation of the levels, the experimental data were compared to shell-model calculations using SDPF-NR and SDPF-U effective interactions. In addition, a detailed discussion about the evolution of the gap between proton $1d_{3/2}$ and $2s_{1/2}$ in the shell model and {it{ab initio}} framework is also presented. item[Conclusions] The dominant component of the wave function for the odd-$A$ isotopes up to $^{45}$K is a $pi 1d_{3/2}^{-1}$ hole. For $^{47,49}$K, the main component originates from a $pi 2s_{1/2}^{-1}$ hole configuration and it inverts back to the $pi 1d_{3/2}^{-1}$ in $^{51}$K. For all even-$A$ isotopes, the dominant configuration arises from a $pi 1d_{3/2}^{-1}$ hole coupled to a neutron in the $ u 1f_{7/2}$ or $ u 2p_{3/2}$ orbitals. Only for $^{48}$K, a significant amount of mixing with $pi 2s_{1/2}^{-1} otimes u (pf)$ is observed leading to a $I^{pi}=1^{-}$ ground state. For $^{50}$K, the ground-state spin-parity is $0^-$ with leading configuration $pi 1d_{3/2}^{-1} otimes u 2p_{3/2}^{-1}$.



rate research

Read More

High-resolution bunched-beam collinear laser spectroscopy was used to measure the optical hyperfine spectra of the $^{43-51}$Ca isotopes. The ground state magnetic moments of $^{49,51}$Ca and quadrupole moments of $^{47,49,51}$Ca were measured for the first time, and the $^{51}$Ca ground state spin $I=3/2$ was determined in a model-independent way. Our results provide a critical test of modern nuclear theories based on shell-model calculations using phenomenological as well as microscopic interactions. The results for the neutron-rich isotopes are in excellent agreement with predictions using interactions derived from chiral effective field theory including three-nucleon forces, while lighter isotopes illustrate the presence of particle-hole excitations of the $^{40}$Ca core in their ground state.
Collinear laser spectroscopy measurements were performed on $^{69,71,73}$Ge isotopes ($Z = 32$) at ISOLDE-CERN. The hyperfine structure of the $4s^2 4p^2 , ^3P_1 rightarrow 4s^2 4p 5s , ^3P_1^o$ transition of the germanium atom was probed with laser light of 269 nm, produced by combining the frequency-mixing and frequency-doubling techniques. The hyperfine fields for both atomic levels were calculated using state-of-the-art atomic relativistic Fock-space coupled-cluster calculations. A new $^{73}$Ge quadrupole moment was determined from these calculations and previously measured precision hyperfine parameters, yielding $Q_{rm s}$ = $-$0.198(4) b, in excellent agreement with the literature value from molecular calculations. The moments of $^{69}$Ge have been revised: $mu$ = +0.920(5) $mu_{N}$ and $Q_{rm s}$= +0.114(8) b, and those of $^{71}$Ge have been confirmed. The experimental moments around $N = 40$ are interpreted with large-scale shell-model calculations using the JUN45 interaction, revealing rather mixed wave function configurations, although their $g$-factors are lying close to the effective single-particle values. Through a comparison with neighboring isotones, the structural change from the single-particle nature of nickel to deformation in germanium is further investigated around $N = 40$.
Nuclear charge radii are sensitive probes of different aspects of the nucleon-nucleon interaction and the bulk properties of nuclear matter; thus, they provide a stringent test and challenge for nuclear theory. The calcium region has been of particular interest, as experimental evidence has suggested a new magic number at $N = 32$ [1-3], while the unexpectedly large increases in the charge radii [4,5] open new questions about the evolution of nuclear size in neutron-rich systems. By combining the collinear resonance ionization spectroscopy method with $beta$-decay detection, we were able to extend the charge radii measurement of potassium ($Z =19$) isotopes up to the exotic $^{52}$K ($t_{1/2}$ = 110 ms), produced in minute quantities. Our work provides the first charge radii measurement beyond $N = 32$ in the region, revealing no signature of the magic character at this neutron number. The results are interpreted with two state-of-the-art nuclear theories. For the first time, a long sequence of isotopes could be calculated with coupled-cluster calculations based on newly developed nuclear interactions. The strong increase in the charge radii beyond $N = 28$ is not well captured by these calculations, but is well reproduced by Fayans nuclear density functional theory, which, however, overestimates the odd-even staggering effect. These findings highlight our limited understanding on the nuclear size of neutron-rich systems, and expose pressing problems that are present in some of the best current models of nuclear theory.
Neutron-deficient $^{177-185}$Hg isotopes were studied using in-source laser resonance-ionization spectroscopy at the CERN-ISOLDE radioactive ion-beam facility, in an experiment combining different detection methods tailored to the studied isotopes. These include either alpha-decay tagging or Multi-reflection Time-of-Flight gating to identify the isotopes of interest. The endpoint of the odd-even nuclear shape staggering in mercury was observed directly by measuring for the first time the isotope shifts and hyperfine structures of $^{177-180}$Hg. Changes in the mean-square charge radii for all mentioned isotopes, magnetic dipole and electric quadrupole moments of the odd-A isotopes and arguments in favor of $I = 7/2$ spin assignment for $^{177,179}$Hg were deduced. Experimental results are compared with Density Functional Theory (DFT) and Monte-Carlo Shell Model (MCSM) calculations. DFT calculations with several Skyrme parameterizations predict a large jump in the charge radius around the neutron $N = 104$ mid shell, with an odd-even staggering pattern related to the coexistence of nearly-degenerate oblate and prolate minima. This near-degeneracy is highly sensitive to many aspects of the effective interaction, a fact that renders perfect agreement with experiment out of reach for current functionals. Despite this inherent diffculty, the SLy5s1 and a modified UNEDF1^{SO} parameterization predict a qualitatively correct staggering that is off by two neutron numbers. MCSM calculations of states with the experimental spins and parities show good agreement for both electromagnetic moments and the observed charge radii. A clear mechanism for the origin of shape staggering within this context is identified: a substantial change in occupancy of the proton $pi h_{9/2}$ and neutron $ u i_{13/2}$ orbitals.
We probe the $N=82$ nuclear shell closure by mass measurements of neutron-rich cadmium isotopes with the ISOLTRAP spectrometer at ISOLDE-CERN. The new mass of $^{132}$Cd offers the first value of the $N=82$, two-neutron shell gap below $Z=50$ and confirms the phenomenon of mutually enhanced magicity at $^{132}$Sn. Using the recently implemented phase-imaging ion-cyclotron-resonance method, the ordering of the low-lying isomers in $^{129}$Cd and their energies are determined. The new experimental findings are used to test large-scale shell-model, mean-field and beyond-mean-field calculations, as well as the ab initio valence-space in-medium similarity renormalization group.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا