Do you want to publish a course? Click here

Charge radii of exotic potassium isotopes challenge nuclear theory and the magic character of $N = 32$

419   0   0.0 ( 0 )
 Added by Xiaofei Yang
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Nuclear charge radii are sensitive probes of different aspects of the nucleon-nucleon interaction and the bulk properties of nuclear matter; thus, they provide a stringent test and challenge for nuclear theory. The calcium region has been of particular interest, as experimental evidence has suggested a new magic number at $N = 32$ [1-3], while the unexpectedly large increases in the charge radii [4,5] open new questions about the evolution of nuclear size in neutron-rich systems. By combining the collinear resonance ionization spectroscopy method with $beta$-decay detection, we were able to extend the charge radii measurement of potassium ($Z =19$) isotopes up to the exotic $^{52}$K ($t_{1/2}$ = 110 ms), produced in minute quantities. Our work provides the first charge radii measurement beyond $N = 32$ in the region, revealing no signature of the magic character at this neutron number. The results are interpreted with two state-of-the-art nuclear theories. For the first time, a long sequence of isotopes could be calculated with coupled-cluster calculations based on newly developed nuclear interactions. The strong increase in the charge radii beyond $N = 28$ is not well captured by these calculations, but is well reproduced by Fayans nuclear density functional theory, which, however, overestimates the odd-even staggering effect. These findings highlight our limited understanding on the nuclear size of neutron-rich systems, and expose pressing problems that are present in some of the best current models of nuclear theory.



rate research

Read More

We report on the measurement of optical isotope shifts for $^{38,39,42,44,46text{-}51}$K relative to $^{47}$K from which changes in the nuclear mean square charge radii across the N=28 shell closure are deduced. The investigation was carried out by bunched-beam collinear laser spectroscopy at the CERN-ISOLDE radioactive ion-beam facility. Mean square charge radii are now known from $^{37}$K to $^{51}$K, covering all $ u f_{7/2}$-shell as well as all $ u p_{3/2}$-shell nuclei. These measurements, in conjunction with those of Ca, Cr, Mn and Fe, provide a first insight into the $Z$ dependence of the evolution of nuclear size above the shell closure at N=28.
The recently confirmed neutron-shell closure at N = 32 has been investigated for the first time below the magic proton number Z = 20 with mass measurements of the exotic isotopes 52,53K, the latter being the shortest-lived nuclide investigated at the online mass spectrometer ISOLTRAP. The resulting two-neutron separation energies reveal a 3 MeV shell gap at N = 32, slightly lower than for 52Ca, highlighting the doubly-magic nature of this nuclide. Skyrme-Hartree-Fock-Boguliubov and ab initio Gorkov-Green function calculations are challenged by the new measurements but reproduce qualitatively the observed shell effect.
The mesoscopic nature of the atomic nucleus gives rise to a wide array of macroscopic and microscopic phenomena. The size of the nucleus is a window into this duality: while the charge radii globally scale as $A^{1/3}$, their evolution across isotopic chains reveals unanticipated structural phenomena [1-3]. The most ubiquitous of these is perhaps the Odd-Even Staggering (OES) [4]: isotopes with an odd number of neutrons are usually smaller in size than the trend of their even-neutron neighbours suggests. This OES effect varies with the number of protons and neutrons and poses a significant challenge for nuclear theory [5-7]. Here, we examine this problem with new measurements of the charge radii of short-lived copper isotopes up to the very exotic $^{78}$Cu $(Z=29, N=49)$, produced at only 20 ions/s, using the highly-sensitive Collinear Resonance Ionisation Spectroscopy (CRIS) method at ISOLDE-CERN. Due to the presence of a single proton outside of the closed Z=28 shell, these measurements provide crucial insights into the single-particle proton structure and how this affects the charge radii. We observe an unexpected reduction in the OES for isotopes approaching the $N=50$ shell gap. To describe the data, we applied models based on nuclear Density Functional Theory [2,8] (DFT) and ab-initio Valence-Space In-Medium Similarity Renormalization Group (VS-IMSRG) theory [9,10]. Through these comparisons, we demonstrate a relation between the global behavior of charge radii and the saturation density of nuclear matter, and show that the local charge radii variations, which reflect the many-body polarization effects due to the odd neutron, naturally emerge from the VS-IMSRG calculations.
We compute the charge radii of even-mass neon and magnesium isotopes from neutron number N = 8 to the dripline. Our calculations are based on nucleon-nucleon and three-nucleon potentials from chiral effective field theory that include delta isobars. These potentials yield an accurate saturation point and symmetry energy of nuclear matter. We use the coupled-cluster method and start from an axially symmetric reference state. Binding energies and two-neutron separation energies largely agree with data and the dripline in neon is accurate. The computed charge radii have an estimated uncertainty of about 2-3% and are accurate for many isotopes where data exist. Finer details such as isotope shifts, however, are not accurately reproduced. Chiral potentials correctly yield the subshell closure at N = 14 and also a decrease in charge radii at N = 8 (observed in neon and predicted for magnesium). They yield a continued increase of charge radii as neutrons are added beyond N = 14 yet underestimate the large increase at N = 20 in magnesium.
We apply the recently proposed RMF(BCS)* ansatz to study the charge radii of the potassium isotopic chain up to $^{52}$K. It is shown that the experimental data can be reproduced rather well, qualitatively similar to the Fayans nuclear density functional theory, but with a slightly better description of the odd-even staggerings (OES). Nonetheless, both methods fail for $^{50}$K and to a lesser extent for $^{48,52}$K. It is shown that if these nuclei are deformed with a $beta_{20}approx-0.2$, then one can obtain results consistent with experiments for both charge radii and spin-parities. We argue that beyond mean field studies are needed to properly describe the charge radii of these three nuclei, particularly for $^{50}$K.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا