Do you want to publish a course? Click here

Curiosity Based Exploration for Learning Terrain Models

115   0   0.0 ( 0 )
 Publication date 2013
and research's language is English




Ask ChatGPT about the research

We present a robotic exploration technique in which the goal is to learn to a visual model and be able to distinguish between different terrains and other visual components in an unknown environment. We use ROST, a realtime online spatiotemporal topic modeling framework to model these terrains using the observations made by the robot, and then use an information theoretic path planning technique to define the exploration path. We conduct experiments with aerial view and underwater datasets with millions of observations and varying path lengths, and find that paths that are biased towards locations with high topic perplexity produce better terrain models with high discriminative power, especially with paths of length close to the diameter of the world.



rate research

Read More

We present a novel control strategy for dynamic legged locomotion in complex scenarios, that considers information about the morphology of the terrain in contexts when only on-board mapping and computation are available. The strategy is built on top of two main elements: first a contact sequence task that provides safe foothold locations based on a convolutional neural network to perform fast and continuous evaluation of the terrain in search of safe foothold locations; then a model predictive controller that considers the foothold locations given by the contact sequence task to optimize target ground reaction forces. We assess the performance of our strategy through simulations of the hydraulically actuated quadruped robot HyQReal traversing rough terrain under realistic on-board sensing and computing conditions.
Mobile robots have become more and more popular in our daily life. In large-scale and crowded environments, how to navigate safely with localization precision is a critical problem. To solve this problem, we proposed a curiosity-based framework that can find an effective path with the consideration of human comfort, localization uncertainty, crowds, and the cost-to-go to the target. Three parts are involved in the proposed framework: the distance assessment module, the curiosity gain of the information-rich area, and the curiosity negative gain of crowded areas. The curiosity gain of the information-rich area was proposed to provoke the robot to approach localization referenced landmarks. To guarantee human comfort while coexisting with robots, we propose curiosity gain of the spacious area to bypass the crowd and maintain an appropriate distance between robots and humans. The evaluation is conducted in an unstructured environment. The results show that our method can find a feasible path, which can consider the localization uncertainty while simultaneously avoiding the crowded area. Curiosity-based Robot Navigation under Uncertainty in Crowded Environments
Were interested in the problem of estimating object states from touch during manipulation under occlusions. In this work, we address the problem of estimating object poses from touch during planar pushing. Vision-based tactile sensors provide rich, local image measurements at the point of contact. A single such measurement, however, contains limited information and multiple measurements are needed to infer latent object state. We solve this inference problem using a factor graph. In order to incorporate tactile measurements in the graph, we need local observation models that can map high-dimensional tactile images onto a low-dimensional state space. Prior work has used low-dimensional force measurements or engineered functions to interpret tactile measurements. These methods, however, can be brittle and difficult to scale across objects and sensors. Our key insight is to directly learn tactile observation models that predict the relative pose of the sensor given a pair of tactile images. These relative poses can then be incorporated as factors within a factor graph. We propose a two-stage approach: first we learn local tactile observation models supervised with ground truth data, and then integrate these models along with physics and geometric factors within a factor graph optimizer. We demonstrate reliable object tracking using only tactile feedback for 150 real-world planar pushing sequences with varying trajectories across three object shapes. Supplementary video: https://youtu.be/y1kBfSmi8w0
In many real-world scenarios where extrinsic rewards to the agent are extremely sparse, curiosity has emerged as a useful concept providing intrinsic rewards that enable the agent to explore its environment and acquire information to achieve its goals. Despite their strong performance on many sparse-reward tasks, existing curiosity approaches rely on an overly holistic view of state transitions, and do not allow for a structured understanding of specific aspects of the environment. In this paper, we formulate curiosity based on grounded question answering by encouraging the agent to ask questions about the environment and be curious when the answers to these questions change. We show that natural language questions encourage the agent to uncover specific knowledge about their environment such as the physical properties of objects as well as their spatial relationships with other objects, which serve as valuable curiosity rewards to solve sparse-reward tasks more efficiently.
We present a unified model-based and data-driven approach for quadrupedal planning and control to achieve dynamic locomotion over uneven terrain. We utilize on-board proprioceptive and exteroceptive feedback to map sensory information and desired base velocity commands into footstep plans using a reinforcement learning (RL) policy trained in simulation over a wide range of procedurally generated terrains. When ran online, the system tracks the generated footstep plans using a model-based controller. We evaluate the robustness of our method over a wide variety of complex terrains. It exhibits behaviors which prioritize stability over aggressive locomotion. Additionally, we introduce two ancillary RL policies for corrective whole-body motion tracking and recovery control. These policies account for changes in physical parameters and external perturbations. We train and evaluate our framework on a complex quadrupedal system, ANYmal version B, and demonstrate transferability to a larger and heavier robot, ANYmal C, without requiring retraining.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا