Do you want to publish a course? Click here

Tunable symmetry breaking and helical edge transport in a graphene quantum spin Hall state

193   0   0.0 ( 0 )
 Added by Andrea Young
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Low-dimensional electronic systems have traditionally been obtained by electrostatically confining electrons, either in heterostructures or in intrinsically nanoscale materials such as single molecules, nanowires, and graphene. Recently, a new paradigm has emerged with the advent of symmetry-protected surface states on the boundary of topological insulators, enabling the creation of electronic systems with novel properties. For example, time reversal symmetry (TRS) endows the massless charge carriers on the surface of a three-dimensional topological insulator with helicity, locking the orientation of their spin relative to their momentum. Weakly breaking this symmetry generates a gap on the surface, resulting in charge carriers with finite effective mass and exotic spin textures. Analogous manipulations of the one-dimensional boundary states of a two-dimensional topological insulator are also possible, but have yet to be observed in the leading candidate materials. Here, we demonstrate experimentally that charge neutral monolayer graphene displays a new type of quantum spin Hall (QSH) effect, previously thought to exist only in TRS topological insulators, when it is subjected to a very large magnetic field angled with respect to the graphene plane. Unlike in the TRS case, the QSH presented here is protected by a spin-rotation symmetry that emerges as electron spins in a half-filled Landau level are polarized by the large in-plane magnetic field. The properties of the resulting helical edge states can be modulated by balancing the applied field against an intrinsic antiferromagnetic instability, which tends to spontaneously break the spin-rotation symmetry. In the resulting canted antiferromagnetic (CAF) state, we observe transport signatures of gapped edge states, which constitute a new kind of one-dimensional electronic system with tunable band gap and associated spin-texture.



rate research

Read More

A quantum Hall edge state provides a rich foundation to study electrons in 1-dimension (1d) but is limited to chiral propagation along a single direction. Here, we demonstrate a versatile platform to realize new 1d systems made by combining quantum Hall edge states of opposite chiralities in a graphene electron-hole bilayer. Using this approach, we engineer helical 1d edge conductors where the counterpropagating modes are localized in separate electron and hole layers by a tunable electric field. These helical conductors exhibit strong nonlocal transport signals and suppressed backscattering due to the opposite spin polarizations of the counterpropagating modes. Moreover, we investigate these electron-hole bilayers in the fractional quantum Hall regime, where we observe conduction through fractional and integer edge states of opposite chiralities, paving the way towards the realization of 1d helical systems with fractional quantum statistics.
Inverted HgTe/CdTe quantum wells have been used as a platform for the realization of 2D topological insulators, bulk insulator materials with spin-helical metallic edges states protected by time-reversal symmetry. This work investigates the spectrum and the charge transport in HgTe/CdTe quantum well junctions both in the topological regime and in the absence of time-reversal symmetry. We model the system using the BHZ effective Hamiltonian and compute the transport properties using recursive Greens functions with a finite differences method. Specifically, we have studied the materials spatially-resolved conductance in a set-up with a gated central region, forming monopolar (n-n$^{prime}$-n) and heteropolar (n-p-n, n-TI-n) double junctions, which have been recently realized in experiments. We find regimes in which the edge states carry spin-polarized currents in the central region even in the presence of a small magnetic field, which breaks TRS. More interestingly, the conductance displays spin-dependent, Fabry-Perot-like oscillations as a function of the central gate voltage producing tunable, fully spin-polarized currents through the device.
Graphene is the first model system of two-dimensional topological insulator (TI), also known as quantum spin Hall (QSH) insulator. The QSH effect in graphene, however, has eluded direct experimental detection because of its extremely small energy gap due to the weak spin-orbit coupling. Here we predict by ab initio calculations a giant (three orders of magnitude) proximity induced enhancement of the TI energy gap in the graphene layer that is sandwiched between thin slabs of Sb2Te3 (or MoTe2). This gap (1.5 meV) is accessible by existing experimental techniques, and it can be further enhanced by tuning the interlayer distance via compression. We reveal by a tight-binding study that the QSH state in graphene is driven by the Kane-Mele interaction in competition with Kekule deformation and symmetry breaking. The present work identifies a new family of graphene-based TIs with an observable and controllable bulk energy gap in the graphene layer, thus opening a new avenue for direct verification and exploration of the long-sought QSH effect in graphene.
Helical symmetry of massive Dirac fermions is broken explicitly in the presence of electric and magnetic fields. Here we present two equations for the divergence of helical and axial-vector currents following the Jackiw-Johnson approach to the anomaly of the neutral axial vector current. We discover the contribution from the helical symmetry breaking is attributed to the occupancy of the two states at the top of the valence band and the bottom of the conduction band. The explicit symmetry breaking fully cancels the anomalous correction from the quantum fluctuation in the band gap. The chiral anomaly can be derived from the helical symmetry breaking. It provides an alternative route to understand the chiral anomaly from the point of view of the helical symmetry breaking. The pertinent physical consequences in condensed matter are the helical magnetic effect which means a charge current circulating at the direction of the magnetic field, and the mass-dependent positive longitudinal magnetoconductivity as a transport signature. The discovery not only reflects anomalous magneto-transport properties of massive Dirac materials but also reveals the close relation between the helical symmetry breaking and the physics of chiral anomaly in quantum field theory and high energy physics.
Intrinsic Hall conductivity, emerging when chiral symmetry is broken, is at the heart of future low energy consumption devices because it can generate non-dissipative charge neutral current. A symmetry breaking state is also induced by electronic correlation even for the centro-symmetric crystalline materials. However, generation of non-dissipative charge neutral current by intrinsic Hall conductivity induced by such spontaneous symmetry breaking is experimentally elusive. Here we report intrinsic Hall conductivity and generation of a non-dissipative charge neutral current in a spontaneous antiferromagnetic state of zero Landau level of bilayer graphene, where spin and valley contrasting Hall conductivity has been theoretically predicted. We performed nonlocal transport experiment and found cubic scaling relationship between the local and nonlocal resistance, as a striking evidence of the intrinsic Hall effect. Observation of such spontaneous Hall transport is a milestone toward understanding the electronic correlation effect on the non-dissipative transport. Our result also paves a way toward electrical generation of a spin current in non-magnetic graphene via coupling of spin and valley in this symmetry breaking state combined with the valley Hall effect.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا