Do you want to publish a course? Click here

Tunable spin-polarized edge transport in inverted quantum-well junctions

163   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Inverted HgTe/CdTe quantum wells have been used as a platform for the realization of 2D topological insulators, bulk insulator materials with spin-helical metallic edges states protected by time-reversal symmetry. This work investigates the spectrum and the charge transport in HgTe/CdTe quantum well junctions both in the topological regime and in the absence of time-reversal symmetry. We model the system using the BHZ effective Hamiltonian and compute the transport properties using recursive Greens functions with a finite differences method. Specifically, we have studied the materials spatially-resolved conductance in a set-up with a gated central region, forming monopolar (n-n$^{prime}$-n) and heteropolar (n-p-n, n-TI-n) double junctions, which have been recently realized in experiments. We find regimes in which the edge states carry spin-polarized currents in the central region even in the presence of a small magnetic field, which breaks TRS. More interestingly, the conductance displays spin-dependent, Fabry-Perot-like oscillations as a function of the central gate voltage producing tunable, fully spin-polarized currents through the device.



rate research

Read More

We explore proximity-induced ferromagnetism on transition metal dichalcogenide (TMD), focusing on molybdenum ditelluride (MoTe$_{2}$) ribbons with zigzag edges, deposited on ferromagnetic europium oxide (EuO). A three-orbital tight-binding model incorporates the exchange and Rashba fields induced by proximity to the EuO substrate. For in-gap Fermi levels, electronic modes in the nanoribbon are strongly spin-polarized and localized along the edges, acting as one-dimensional (1D) conducting channels with tunable spin-polarized currents. Hybrid structures such as the MoTe$_{2}$/EuO configuration can serve as building blocks for spintronic devices, and provide versatile platforms to further understand proximity effects in diverse materials systems.
We study the transport properties of a voltage-biased Josephson junction where the BCS superconducting leads are coupled via the edges of a quantum Hall sample. In this scenario, an out of equilibrium Josephson current develops, which is numerically studied within the Floquet-Keldysh Greens function formalism. We particularly focus on the time-averaged current as a function of both the bias voltage and the magnetic flux threading the sample and analyze the resonant multiple Andreev reflection processes that lead to an enhancement of the quasiparticle transmission. We find that a full tomography of the dc current in the voltage-flux plane allows for a complete spectroscopy of the one-way edge modes and could be used as a hallmark of chiral edge mediated transport in these hybrid devices.
Low-dimensional electronic systems have traditionally been obtained by electrostatically confining electrons, either in heterostructures or in intrinsically nanoscale materials such as single molecules, nanowires, and graphene. Recently, a new paradigm has emerged with the advent of symmetry-protected surface states on the boundary of topological insulators, enabling the creation of electronic systems with novel properties. For example, time reversal symmetry (TRS) endows the massless charge carriers on the surface of a three-dimensional topological insulator with helicity, locking the orientation of their spin relative to their momentum. Weakly breaking this symmetry generates a gap on the surface, resulting in charge carriers with finite effective mass and exotic spin textures. Analogous manipulations of the one-dimensional boundary states of a two-dimensional topological insulator are also possible, but have yet to be observed in the leading candidate materials. Here, we demonstrate experimentally that charge neutral monolayer graphene displays a new type of quantum spin Hall (QSH) effect, previously thought to exist only in TRS topological insulators, when it is subjected to a very large magnetic field angled with respect to the graphene plane. Unlike in the TRS case, the QSH presented here is protected by a spin-rotation symmetry that emerges as electron spins in a half-filled Landau level are polarized by the large in-plane magnetic field. The properties of the resulting helical edge states can be modulated by balancing the applied field against an intrinsic antiferromagnetic instability, which tends to spontaneously break the spin-rotation symmetry. In the resulting canted antiferromagnetic (CAF) state, we observe transport signatures of gapped edge states, which constitute a new kind of one-dimensional electronic system with tunable band gap and associated spin-texture.
We investigate the current noise in HgTe-based quantum wells with an inverted band structure in the regime of disordered edge transport. Consistent with previous experiments, the edge resistance strongly exceeds $h/e^2$ and weakly depends on the temperature. The shot noise is well below the Poissonian value and characterized by the Fano factor with gate voltage and sample to sample variations in the range $0.1<F<0.3$. Given the fact that our devices are shorter than the most pessimistic estimate of the ballistic dephasing length, these observations exclude the possibility of one-dimensional helical edge transport. Instead, we suggest that a disordered multi-mode conduction is responsible for the edge transport in our experiment.
190 - G. C. Dyer , X. Shi , B. V. Olson 2016
Direct current (DC) transport and far infrared photoresponse were studied an InAs/GaSb double quantum well with an inverted band structure. The DC transport depends systematically upon the DC bias configuration and operating temperature. Surprisingly, it reveals robust edge conduction despite prevalent bulk transport in our device of macroscopic size. Under 180 GHz far infrared illumination at oblique incidence, we measured a strong photovoltaic response. We conclude that quantum spin Hall edge transport produces the observed transverse photovoltages. Overall, our experimental results support a hypothesis that the photoresponse arises from direct coupling of the incident radiation field to edge states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا