No Arabic abstract
We report a systematic investigation on c-axis point-contact Andreev reflection (PCAR) in BaFe$_{2-x}$Ni$_x$As$_2$ superconducting single crystals from underdoped to overdoped regions (0.075 $leq xleq 0.15$). At optimal doping ($x=0.1$) the PCAR spectrum feature the structures of two superconducting gap and electron-boson coupling mode. In the $spm$ scenario, quantitative analysis using a generalized Blonder-Tinkham-Klapwijk (BTK) formalism with two gaps: one isotropic and another angle dependent, suggest a nodeless state in strong-coupling limit with gap minima on the Fermi surfaces. Upon crossing above the optimal doping ($x > 0.1$), the PCAR spectrum show an in-gap sharp narrow peak at low bias, in contrast to the case of underdoped samples ($x < 0.1$), signaling the onset of deepened gap minima or nodes in the superconducting gap. This result provides evidence of the modulation of the gap amplitude with doping concentration, consistent with the calculations for the orbital dependent pair interaction mediated by the antiferromagnetic spin fluctuations.
We report on specific heat measurements on clean overdoped $mathrm{BaFe_{2}(As_{1-x}P_x)_2}$ single crystals performed with a high resolution membrane-based nanocalorimeter. A nonzero residual electronic specific heat coefficient at zero temperature $gamma_mathrm{r}={C/T}|_{T to 0}$ is seen for all doping compositions, indicating a considerable fraction of the Fermi surface ungapped or having very deep minima. The remaining superconducting electronic specific heat is analyzed through a two-band s-wave $alpha$ model in order to investigate the gap structure. Close to optimal doping we detect a single zero-temperature gap of $Delta_0 sim 5.3,mathrm{meV}$, corresponding to $Delta_0 / k_mathrm{B} T_mathrm{c} sim 2.2$. Increasing the phosphorus concentration $x$, the main gap reduces till a value of $Delta_0 sim 1.9,mathrm{meV}$ for $x = 0.55$ and a second weaker gap becomes evident. From the magnetic field effect on $gamma_mathrm{r}$, all samples however show similar behavior [$gamma_mathrm{r}(H) - gamma_mathrm{r}(H=0) propto H^n$, with $n$ between 0.6 and 0.7]. This indicates that, despite a considerable redistribution of the gap weights, the total degree of gap anisotropy does not change drastically with doping.
We have systematically studied the low-temperature specific heat of the BaFe$_{2-x}$Ni$_x$As$_2$ single crystals covering the whole superconducting dome. Using the nonsuperconducting heavily overdoped x = 0.3 sample as a reference for the phonon contribution to the specific heat, we find that the normal-state electronic specific heats in the superconducting samples may have a nonlinear temperature dependence, which challenges previous results in the electron-doped Ba-122 iron-based superconductors. A model based on the presence of ferromagnetic spin fluctuations may explain the data between x = 0.1 and x = 0.15, suggesting the important role of Fermi-surface topology in understanding the normal-state electronic states.
Directional point-contact Andreev-reflection (PCAR) measurements in Ba(Fe1-xCox)2As2 single crystals (Tc=24.5 K) indicate the presence of two superconducting gaps with no line nodes on the Fermi surface. The PCAR spectra also feature additional structures related to the electron-boson interaction, from which the characteristic boson energy Omega_b(T) is obtained, very similar to the spin-resonance energy observed in neutron scattering experiments. Both the gaps and the additional structures can be reproduced within a three-band s+- Eliashberg model by using an electron-boson spectral function peaked at Omega_0 = 12 meV ~ Omega_b(0).
We have systematically studied the nematic fluctuations in the electron-doped iron-based superconductor BaFe$_{2-x}$Ni$_x$As$_2$ by measuring the in-plane resistance change under uniaxial pressure. While the nematic quantum critical point can be identified through the measurements along the (110) direction as studied previously, quantum and thermal critical fluctuations cannot be distinguished due to similar Curie-Weiss-like behaviors. Here we find that a sizable pressure-dependent resistivity along the (100) direction is present in all doping levels, which is against the simple picture of an Ising-type nematic model. The signal along the (100) direction becomes maximum at optimal doping, suggesting that it is associated with nematic quantum critical fluctuations. Our results indicate that thermal fluctuations from striped antiferromagnetic order dominate the underdoped regime along the (110) direction. We argue that either there is a strong coupling between the quantum critical fluctuations and the fermions, or more exotically, a higher symmetry may be present around optimal doping.
We investigate the in-plane anisotropy of Fe 3d orbitals occurring in a wide temperature and composition range of BaFe2(As1-xPx)2 system. By employing the angle-resolved photoemission spectroscopy, the lifting of degeneracy in dxz and dyz orbitals at the Brillouin zone corners can be obtained as a measure of the orbital anisotropy. In the underdoped regime, it starts to evolve on cooling from high temperatures above both antiferromagnetic and orthorhombic transitions. With increasing x, it well survives into the superconducting regime, but gradually gets suppressed and finally disappears around the non-superconducting transition (x = 0.7). The observed spontaneous in-plane orbital anisotropy, possibly coupled with anisotropic lattice and magnetic fluctuations, implies the rotational-symmetry broken electronic state working as the stage for the superconductivity in BaFe2(As1-xPx)2.