Do you want to publish a course? Click here

Single-particle and collective excitations in quantum wires comprised of vertically stacked quantum dots: Finite magnetic field

96   0   0.0 ( 0 )
 Added by Manvir Kushwaha
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

A theoretical investigation has been made of the magnetoplasmon excitations in a quasi-one-dimensional electron system comprised of vertically stacked, self-assembled InAs/GaAs quantum dots. The smaller length scales involved in the experiments impel us to consider a perfectly periodic system of two-dimensionally confined InAs quantum dot layers separated by GaAs spacers. Subsequent system is subjected to a two-dimensional confining (harmonic) potential in the x-y plane and an applied magnetic field (B) in the symmetric gauge. This scheme defines virtually a system of quantum wire comprised of vertically stacked quantum dots (VSQD). We derive and discuss the Dyson equation, the generalized (nonlocal and dynamic) dielectric function, and the inverse dielectric function for investigating the single-particle and collective (magnetoplasmon) excitations within the framework of (full) random-phase approximation (RPA). As an application, we study the influence of the confinement potential and the magnetic field on the component eigenfunctions, the density of states (DOS), the Fermi energy, the collective excitations, and the inverse dielectric functions. These findings demonstrate, for the very first time, the significance of investigating the system of VSQD subjected to a quantizing magnetic field. Given the edge over the planar quantum dots and the foreseen applications in the single-electron devices and quantum computation, investigating the system of VSQD is deemed vital. The results suggest exploiting magnetoplasmon qubits to be a potential option for implementing the solemn idea of quantum state transfer in devising quantum gates for the quantum computation and quantum communication networks.



rate research

Read More

80 - Manvir S. Kushwaha 2019
A deeper sense of advantages over the planar quantum dots and the foreseen applications in the single-electron devices and quantum computation have given vertically stacked quantum dots (VSQD) a width of interest. Here, we embark on the collective excitations in a quantum wire made-up of vertically stacked, self-assembled InAs/GaAs quantum dots in the presence of an applied magnetic field in the symmetric gauge. We compute and illustrate the influence of an applied magnetic field on the behavior characteristics of the density of states, Fermi energy, and collective (magnetoplasmon) excitations [obtained within the framework of random-phase approximation (RPA)]. The Fermi energy is observed to oscillate as a function of the Bloch vector. Remarkably, the intersubband single-particle continuum splits into two with a collective excitation propagating within the gap. This is attributed to the (orbital) quantum number owing to the applied magnetic field. Strikingly, the alteration in the well- and barrier-widths can enable us to customize the excitation spectrum in the desired energy range. These findings demonstrate, for the very first time, the viability and importance of studying the VSQD subjected to an applied magnetic field. The technological promise that emerges is the route to devices exploiting magnetoplasmon qubits as the potential option in designing quantum gates for the quantum communication networks.
272 - Manvir S. Kushwaha 2012
The nanofabrication technology has taught us that an $m$-dimensional confining potential imposed upon an $n$-dimensional electron gas paves the way to a quasi-($n-m$)-dimensional electron gas, with $m le n$ and $1le n, m le 3$. This is the road to the (semiconducting) quasi-$n$ dimensional electron gas systems we have been happily traversing on now for almost three decades. Achieving quasi-one dimensional electron gas (Q-1DEG) [or quantum wire(s) for more practical purposes] led us to some mixed moments in this journey: while the reduced phase space for the scattering led us believe in the route to the faster electron devices, the proximity to the 1D systems left us in the dilemma of describing it as a Fermi liquid or as a Luttinger liquid. No one had ever suspected the potential of the former, but it took quite a while for some to convince the others on the latter. A realistic Q-1DEG system at the low temperatures is best describable as a Fermi liquid rather than as a Luttinger liquid. In the language of condensed matter physics, a critical scrutiny of Q-1DEG systems has provided us with a host of exotic (electronic, optical, and transport) phenomena revealing their unparallel behavior characteristics unseen in their higher or lower dimensional counterparts. Here, we embark on the systematic investigation of the inelastic electron scattering (IES) and of inelastic light scattering (ILS) from the elementary electronic excitations in quantum wires in the absence of an applied magnetic field. To that end, we begin with the Kubos correlation functions to derive the generalized nonlocal, dynamic dielectric function, the inverse dielectric function, and the Dyson equation for the dynamic screened potential in the framework of Bohm-Pines full and famous random-phase approximation...
The transport through a quantum wire exposed to two magnetic spikes in series is modeled. We demonstrate that quantum dots can be formed this way which couple to the leads via magnetic barriers. Conceptually, all quantum dot states are accessible by transport experiments. The simulations show Breit-Wigner resonances in the closed regime, while Fano resonances appear as soon as one open transmission channel is present. The system allows to tune the dots confinement potential from sub-parabolic to superparabolic by experimentally accessible parameters.
We study the nature of excitons bound to I1 basal plane stacking faults in ensembles of ultrathin GaN nanowires by continuous-wave and time-resolved photoluminescence spectroscopy. These ultrathin nanowires, obtained by the thermal decomposition of spontaneously formed GaN nanowire ensembles, are tapered and have tip diameters down to 6 nm. With decreasing nanowire diameter, we observe a strong blue shift of the transition originating from the radiative decay of stacking fault-bound excitons. Moreover, the radiative lifetime of this transition in the ultrathin nanowires is independent of temperature up to 60 K and significantly longer than that of the corresponding transition in as-grown nanowires. These findings reveal a zero-dimensional character of the confined exciton state and thus demonstrate that I1 stacking faults in ultrathin nanowires act as genuine quantum dots.
177 - R. K. Kaul , D. Ullmo , G. Zarand 2008
We consider an impurity with a spin degree of freedom coupled to a finite reservoir of non-interacting electrons, a system which may be realized by either a true impurity in a metallic nano-particle or a small quantum dot coupled to a large one. We show how the physics of such a spin impurity is revealed in the many-body spectrum of the entire finite-size system; in particular, the evolution of the spectrum with the strength of the impurity-reservoir coupling reflects the fundamental many-body correlations present. Explicit calculation in the strong and weak coupling limits shows that the spectrum and its evolution are sensitive to the nature of the impurity and the parity of electrons in the reservoir. The effect of the finite size spectrum on two experimental observables is considered. First, we propose an experimental setup in which the spectrum may be conveniently measured using tunneling spectroscopy. A rate equation calculation of the differential conductance suggests how the many-body spectral features may be observed. Second, the finite-temperature magnetic susceptibility is presented, both the impurity susceptibility and the local susceptibility. Extensive quantum Monte-Carlo calculations show that the local susceptibility deviates from its bulk scaling form. Nevertheless, for special assumptions about the reservoir -- the clean Kondo box model -- we demonstrate that finite-size scaling is recovered. Explicit numerical evaluations of these scaling functions are given, both for even and odd parity and for the canonical and grand-canonical ensembles.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا