Do you want to publish a course? Click here

Transition from a phase-segregated state to single-phase incommensurate sodium ordering in Na_xCoO_2 with x approx 0.53

120   0   0.0 ( 0 )
 Added by R. Feyerherm
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Synchrotron X-ray diffraction investigations of two single crystals of Na_xCoO_2 from different batches with composition x = 0.525-0.530 reveal homogeneous incommensurate sodium ordering with propagation vector (0.53 0.53 0) at room-temperature. The incommensurate (qq0) superstructure exists between 220 K and 430 K. The value of q varies between q = 0.514 and 0.529, showing a broad plateau at the latter value between 260 K and 360 K. On cooling, unusual reversible phase segregation into two volume fractions is observed. Below 220 K, one volume fraction shows the well-known commensurate orthorhombic x = 0.50 superstructure, while a second volume fraction with x = 0.55 exhibits another commensurate superstructure, presumably with a 6a x 6a x c hexagonal supercell. We argue that the commensurate-to-incommensurate transition is an intrinsic feature of samples with Na concentrations x = 0.5 + d with d ~ 0.03.



rate research

Read More

255 - T. Wu , K. Liu , H. Chen 2008
We systematically study Raman spectroscopy of cleaved Na$_x$CoO$_2$ single crystals with 0.37 $leq$ x $leq$ 0.80. The Raman shift of A$_{1g}$ mode is found to be linearly dependent on Na content, while the Raman shift of E$_{1g}$ mode has an abnormal shift to high frequency around x = 0.5. The abnormal shift is ascribed to the occurrence of Na rearrangement in O1 structure. Temperature dependent Raman spectrum for x = 0.56 sample shows that Na rearrangement transition from O1 structure to H1 structure occurs around 240 K. Electronic transport and susceptibility for the sample with $x=0.56$ show a response to the Na rearrangement transition from O1 to H1 structure, and that different Na ordering pattern causes distinct physical properties. These results give a direct evidence to proved Na ordering effect on physical properties of Co-O plane.
In this study, we synthesized single crystals of Na$_{x}$CoO$_{2}$ with $xsim0.8$ using the optical floating zone technique. A thorough electrochemical treatment of the samples permitted us to control the de-intercalation of Na to obtain single crystal samples of stable Na ordered phases with $x=0.5-0.8$. Comparisons of the bulk magnetic properties with those observed in the Na ordered powder samples confirmed the high quality of these single crystal phases. The ab plane resistivity was measured for the Na ordered samples and it was quite reproducible for different sample batches. The data were analogous to those found in previous initial experimental studies on single crystals, but the lower residual resistivity and sharper anti-ferromagnetic transitions determined for our samples confirmed their higher quality.
We report the discovery of a first-order phase transition at around 125 K in NbCrP, which is a nonsymmorphic crystal with Pnma space group. From the resistivity, magnetic susceptibility, and nuclear magnetic resonance measurements using the crystals made by the Sn-flux method, the high-temperature (HT) phase is characterized to be metallic with a non-negligible magnetic anisotropy. The low-temperature (LT) phase is also found to be a nonmagnetic metallic state with a crystal of lower symmetry. In the LT phase, the spin susceptibility is reduced by ~30 % from that in the HT phase, suggesting that the phase transition is triggered by the electronic instability. The possible origin of the phase transition in NbCrP is discussed based on the electronic structure by comparing with those in other nonsymmorphic compounds RuP and RuAs.
Neutron powder diffraction measurements, combined with magnetization and resistivity data, have been carried out in the doped perovskite La$_{1-x}$Ca$_x$MnO$_3$ ($x=0.47$, 0.50, and 0.53) to elucidate the structural, magnetic, and electronic properties of the system around the composition corresponding to an equal number of Mn3+ and Mn4+. At room temperature all three samples are paramagnetic and single phase, with crystallographic symmetry Pnma. The samples then all become ferromagnetic (FM) at $T_Capprox 265$ K. At $sim 230$ K, however, a second distinct crystallographic phase (denoted A-II) begins to form. Initially the intrinsic widths of the peaks are quite large, but they narrow as the temperature decreases and the phase fraction increases, indicating microscopic coexistence. The fraction of the sample that exhibits the A-II phase increases with decreasing temperature and also increases with increasing Ca doping, but the transition never goes to completion to the lowest temperatures measured (5 K) and the two phases therefore coexist in this temperature-composition regime. Phase A-II orders antiferromagnetically (AFM) below a N{e}el temperature $T_N approx 160$ K, with the CE-type magnetic structure. Resistivity measurements show that this phase is a conductor, while the CE phase is insulating. Application of magnetic fields up to 9 T progressively inhibits the formation of the A-II phase, but this suppression is path dependent, being much stronger for example if the sample is field-cooled compared to zero-field cooling and then applying the field. The H-T phase diagram obtained from the diffraction measurements is in good agreement with the results of magnetization and resistivity.
In this paper we address many of the fundamental open questions regarding the glassy behavior of the magnetic/electronic phase segregated state in rare earth perovskites. In particular, magnetic relaxation experiments support that the collective effects (memory, ageing, etc.) are due to interparticle interactions, rather than the double-exchange vs. superexchange competition. A careful study of the non-linear susceptibility in the critical region is performed, and the critical exponents contrasted with those of conventional spin-glasses and concentrated quenched ferrofluids. The phase segregated state constitutes a sort of self-generated assembly of magnetic particles in which magnetic interaction introduces collectivity among the clusters.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا