In this study, we synthesized single crystals of Na$_{x}$CoO$_{2}$ with $xsim0.8$ using the optical floating zone technique. A thorough electrochemical treatment of the samples permitted us to control the de-intercalation of Na to obtain single crystal samples of stable Na ordered phases with $x=0.5-0.8$. Comparisons of the bulk magnetic properties with those observed in the Na ordered powder samples confirmed the high quality of these single crystal phases. The ab plane resistivity was measured for the Na ordered samples and it was quite reproducible for different sample batches. The data were analogous to those found in previous initial experimental studies on single crystals, but the lower residual resistivity and sharper anti-ferromagnetic transitions determined for our samples confirmed their higher quality.
$^{59}$Co NMR experiments have been performed on single crystals of the layered cobaltate Na$_{x}$CoO$_{2}$ with x=0.77 which is an antiferromagnet with Neel temperature $T_{N}=22$~K. In this metallic phase six Co sites are resolved in the NMR spectra, with distinct quadrupole frequencies $ u _{Q}$, magnetic shifts $K_{ZZ}$ and nuclear spin lattice relaxation rates $% 1/T_{1}$. Contrary to the $x=1/2$ or $x=2/3$ phases the 3D stacking of the Na planes is not perfect for $x=0.77$ but this does not influence markedly the electronic properties. We evidence that the magnetic and charge properties of the Co sites are highly correlated with each other as $K_{ZZ}$ and $(1/T_{1})^{1/2}$ scale linearly with $ u _{Q}$. The data analysis allows us to separate the contribution $ u_{Q}^{latt}$ of the ionic charges to $ u _{Q}$ from that $ u _{Q}^{el}$ due to the hole orbitals on the Co sites. We could extend coherently this analysis to all the known phases in the Na cobaltate phase diagram. The variation with $x$ of $ u _{Q}^{latt}$ is found to fit rather well numerical computations done in a point charge model. The second term $ u _{Q}^{el}$ allowed us to deduce the hole concentration on the cobalts. These detailed experimental results should stimulate theoretical calculations of the electronic structure involving both the Co orbital configurations and DMFT approaches to take into account the electronic correlations.
We have synthesized and characterized different stable phases of sodium cobaltates Na$_{x}$CoO$_{2}$ with sodium content $0.65<x<0.80$. We demonstrate that $^{23}$Na NMR allows to determine the difference in the susceptibility of the phases and reveals the presence of Na order in each phase. $^{59}$Co NMR experiments give clear evidence that Co charge disproportionation is a dominant feature of Na cobaltates. Only a small fraction ($approx$ 25%) of cobalts are in a non-magnetic Co$^{3+}$ charge state whereas electrons delocalize on the other cobalts. The magnetic and charge properties of the different Co sites are highly correlated with each other as their magnetic shift $K_{ZZ}$ scales linearly with their quadrupolar frequency $nu_Q$. This reflects the fact that the hole content on the Co orbitals varies from site to site. The unusual charge differentiation found in this system calls for better theoretical understanding of the incidence of the Na atomic order on the electronic structures of these compounds.
We have synthesized and characterized four different stable phases of Na ordered Na$_{x}$CoO$_{2}$, for $0.65<x<0.8$. Above 100 K they display similar Curie-Weiss susceptibilities as well as ferromagnetic $q=0$ spin fluctuations in the CoO$_{2}$ planes revealed by $^{23}$Na NMR data. In all phases from $^{59}$Co NMR data we display evidences that the Co disproportionate already above 300 K into non magnetic Co$^{3+}$ and magnetic $approx $Co$^{3.5+}$ sites on which holes delocalize. This allows us to understand that metallic magnetism is favored for these large Na contents. Below 100 K the phases differentiate, and a magnetic order sets in only for $xgtrsim 0.75$ at $T_{N}=$22 K. We suggest that the charge order also governs the low $T$ energy scales and transverse couplings.
We have utilized neutron powder diffraction to probe the crystal structure of layered Na$_{x}$CoO$_{2}$ near the half doping composition of $x=$0.46 over the temperature range of 2 to 600K. Our measurements show evidence of a dynamic transition in the motion of Na-ions at 300K which coincides with the onset of a near zero thermal expansion in the in-plane lattice constants. The effect of the Na-ordering on the CoO$_{2}$ layer is reflected in the octahedral distortion of the two crystallographically inequivalent Co-sites and is evident even at high temperatures. We find evidence of a weak charge separation into stripes of Co$^{+3.5+epsilon}$ and Co$^{+3.5-epsilon}$, $epsilonsim0.06e$ below Tco=150K. We argue that changes in the Na(1)-O bond lengths observed at the magnetic transition at tm=88K reflect changes in the electronic state of the CoO$_{2}$ layer
The strength and effect of Coulomb correlations in the (superconducting when hydrated) x~1/3 and ``enhanced x~2/3 regimes of Na(x)CoO2 are evaluated using the correlated band theory LDA+U method. Our results, neglecting quantum fluctuations, are: (1) allowing only ferromagnetic order, there is a critical U_c = 3 eV, above which charge disproportionation occurs for both x=1/3 and x=2/3, (2) allowing antiferromagnetic order at x=1/3, U_c drops to 1 eV for disproportionation, (3) disproportionation and gap opening occur simultaneously, (4) in a Co(3+)-Co(4+) ordered state, antiferromagnetic coupling is favored over ferromagnetic, while below U_c ferromagnetism is favored. Comparison of the calculated Fermi level density of states compared to reported linear specific heat coefficients indicates enhancement of the order of five for x~0.7, but negligible enhancement for x~0.3. This trend is consistent with strong magnetic behavior and local moments (Curie-Weiss susceptibility) for x>0.5 while there no magnetic behavior or local moments reported for x<0.5. We suggest that the phase diagram is characterized by a crossover from effective single-band character with U >> W for x>0.5 into a three-band regime for x<0.5, where U --> U_eff <= U/sqrt(3) ~ W and correlation effects are substantially reduced.
I. F. Gilmutdinov
,I. R. Mukhamedshin
,F. Rullier-Albenque
.
(2017)
.
"Synthesis of sodium cobaltate Na$_{x}$CoO$_{2}$ single crystals with controlled Na ordering"
.
Ildar Faritovich Gilmutdinov
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا