No Arabic abstract
In this paper we address many of the fundamental open questions regarding the glassy behavior of the magnetic/electronic phase segregated state in rare earth perovskites. In particular, magnetic relaxation experiments support that the collective effects (memory, ageing, etc.) are due to interparticle interactions, rather than the double-exchange vs. superexchange competition. A careful study of the non-linear susceptibility in the critical region is performed, and the critical exponents contrasted with those of conventional spin-glasses and concentrated quenched ferrofluids. The phase segregated state constitutes a sort of self-generated assembly of magnetic particles in which magnetic interaction introduces collectivity among the clusters.
The origin of the spiral spin-order in perovskite multiferroic manganites $R$MnO$_{3}$ ($RE=$ Tb or Dy) is here investigated using a two $e_{rm g}$-orbitals double-exchange model. Our main result is that the experimentally observed spiral phase can be stabilized by introducing a relatively weak next-nearest-neighbor superexchange coupling ($sim10%$ of the nearest-neighbor superexchange). Moreover, the Jahn-Teller lattice distortion is also shown to be essential to obtain a realistic spiral period. Supporting our conclusions, the generic phase diagram of undoped perovskite manganites is obtained using Monte Carlo simulations, showing phase transitions from the A-type antiferromagnet, to the spiral phase, and finally to the E-type antiferromagnet, with decreasing size of the $R$ ions. These results are qualitatively explained by the enhanced relative intensity of the superexchanges.
The structural, magnetic and transport properties of the layered RBaCo$_2$O$_{5.5}$ cobaltites are sensitive to the oxygen stoichiometry. In this present study, we report the presence of a low-temperature magnetic glassy state in electron-doped polycrystalline YBaCo$_2$O$_{5.5}$ cobaltite. The ac magnetization studies show the absence of conventional spin glass features, while the various dc magnetization studies demonstrate the presence of non-equilibrium magnetic glassy state at low temperature. The magnetic glassy state of this sample results from the kinetic arrest of the first order ferro (or ferri) to antiferromagnetic transition. The role of electron doping in the occurrence of magnetic glassy phenomena is discussed in terms of magnetic phase separation involving the Co3+/Co2+ clusters of the ferrimagnetic phase in the Co3+/Co3+ antiferromagnetic matrix.
The enhancement of mobility at the surface of an amorphous alloy is studied using a combination of molecular dynamic simulations and normal mode analysis of the non-uniform distribution of Debye-Waller factors. The increased mobility at the surface is found to be associated with the appearance of Arrhenius temperature dependence. We show that the transverse Debye-Waller factor exhibits a peak at the surface. Over the accessible temperature range, we find that the bulk and surface diffusion coefficients obey the same empirical relationship with the respective Debye-Waller factors. Extrapolating this relationship to lower T, we argue that the observed decrease in the constraint at the surface is sufficient to account for the experimentally observed surface enhancement of mobility.
Neutron scattering has been used to investigate the evolution of the long- and short-range charge-ordered (CO), ferromagnetic (FM), and antiferromagnetic (AF) correlations in single crystals of Pr1-xCaxMnO3. The existence and population of spin clusters as refected by short-range correlations are found to drastically depend on the doping (x) and temperature (T). Concentrated spin clusters coexist with long-range canted AF order in a wide temperature range in x = 0.3 while clusters do not appear in x = 0.4 crystal. In contrast, both CO and AF order parameters in the x = 0.35 crystal show a precipitous decrease below ~ 35 K where spin clusters form. These results provide direct evidence of magnetic phase separation and indicate that there is a critical doping x_c (close to x = 0.35) that divides the phase-separated site-centered from the homogeneous bond-centered or charge-disproportionated CO ground state.
Present study reveals that the free energy landscape of the La5/8-yPryCa3/8MnO3 (LPCMO) system could be modified by elastic strain interaction in the epitaxial thin films. Epitaxial LPCMO thin films of various thicknesses are grown on LaAlO3 substrate by pulsed laser deposition. With increasing thickness, by virtue of island growth morphology, strain disorder is invoked in thin films during strain relaxation process. The length-scale of phase separation is found to be highly correlated with strain disorder. Magneto-transport measurements demonstrate that coherent strain stabilizes charge ordered insulating phase while strain disorder stabilizes metallic phase. Resistivity under cooling and heating in unequal field (CHUF) protocol exhibits lower value of freezing temperature for strain disordered films compared to bulk system. Raman spectroscopy reveals that the charge ordered insulating and ferromagnetic metallic phases are structurally dissimilar and possess monoclinic and rhombohedral like symmetries respectively. Interfaces between two phases strongly influence low temperature glassy metastable state resulting in different phase separation states in the LPCMO thin films.