Do you want to publish a course? Click here

Non-homogeneous Bell-type Inequalities for Two- and Three-qubit States

158   0   0.0 ( 0 )
 Added by Changliang Ren
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

A systematic approach is presented to construct non-homogeneous two- and three-qubit Bell-type inequalities. When projector-like terms are subtracted from homogeneous two-qubit CHSH polynomial, non-homogeneous inequalities are attained and the maximal quantum mechanical violation asymptotically equals a constant with the subtracted terms becoming sufficiently large. In the case of three-qubit system, it is found that most significant three-qubit inequalities presented in literature can be recovered in our framework. We aslo discuss the behavior of such inequalities in the loophole-free Bell test and obtain corresponding thresholds of detection efficiency.



rate research

Read More

We introduce a set of Bell inequalities for a three-qubit system. Each inequality within this set is violated by all generalized GHZ states. More entangled a generalized GHZ state is, more will be the violation. This establishes a relation between nonlocality and entanglement for this class of states. Certain inequalities within this set are violated by pure biseparable states. We also provide numerical evidence that at least one of these Bell inequalities is violated by a pure genuinely entangled state. These Bell inequalities can distinguish between separable, biseparable and genuinely entangled pure three-qubit states. We also generalize this set to n-qubit systems and may be suitable to characterize the entanglement of n-qubit pure states.
Non-trivial facet inequalities play important role in detecting and quantifying the nonolocality of a state -- specially a pure state. Such inequalities are expected to be tight. Number of such inequalities depends on the Bell test scenario. With the increase in the number of parties, dimensionality of the Hilbert space, or/and the number of measurements, there are more nontrivial facet inequalities. By considering a specific measurement scenario, we find that for any multipartite qubit state, local polytope can have only one nontrivial facet. Therefore there exist a possibility that only one Bell inequality, and its permutations, would be able to detect the nonlocality of a pure state. The scenario involves two dichotomic measurement settings for two parties and one dichotomic measurement by other parties. This measurement scenario for a multipartite state may be considered as minimal scenario involving multipartite correlations that can detect nonlocality. We present detailed results for three-qubit states.
Bell inequalities constitute a key tool in quantum information theory: they not only allow one to reveal nonlocality in composite quantum systems, but, more importantly, they can be used to certify relevant properties thereof. We provide a very simple and intuitive construction of Bell inequalities that are maximally violated by the multiqubit graph states and can be used for their robust self-testing. The main advantage of our inequalities over previous constructions for these states lies in the fact that the number of correlations they contain scales only linearly with the number of observers, which presents a significant reduction of the experimental effort needed to violate them. We also discuss possible generalizations of our approach by showing that it is applicable to entangled states whose stabilizers are not simply tensor products of Pauli matrices.
We construct a simple algorithm to generate any CHSH type Bell inequality involving a party with two local binary measurements from two CHSH type inequalities without this party. The algorithm readily generalizes to situations, where the additional observer uses three measurement settings. There, each inequality involving the additional party is constructed from three inequalities with this party excluded. With this generalization at hand, we construct and analyze new symmetric inequalities for four observers and three experimental settings per observer.
Entanglement and Bell nonlocality are used to describe quantum inseparabilities. Bell-nonlocal states form a strict subset of entangled states. A natural question arises concerning how much territory Bell nonlocality occupies entanglement for a general two-qubit entangled state. In this work, we investigate the relation between entanglement and Bell nonlocality by using lots of randomly generated two-qubit states, and give out a constraint inequality relation between the two quantum resources. For studying the upper or lower boundary of the inequality relation, we discover maximally (minimally) nonlocal entangled states, which maximize (minimize) the value of the Bell nonlocality for a given value of the entanglement. Futhermore, we consider a special kind of mixed state transformed by performing an arbitrary unitary operation on werner state. It is found that the special mixed states entanglement and Bell nonlocality are related to ones of a pure state transformed by the unitary operation performed on the Bell state.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا