Do you want to publish a course? Click here

New Bell inequalities for three-qubit pure states

69   0   0.0 ( 0 )
 Added by Arpan Das
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce a set of Bell inequalities for a three-qubit system. Each inequality within this set is violated by all generalized GHZ states. More entangled a generalized GHZ state is, more will be the violation. This establishes a relation between nonlocality and entanglement for this class of states. Certain inequalities within this set are violated by pure biseparable states. We also provide numerical evidence that at least one of these Bell inequalities is violated by a pure genuinely entangled state. These Bell inequalities can distinguish between separable, biseparable and genuinely entangled pure three-qubit states. We also generalize this set to n-qubit systems and may be suitable to characterize the entanglement of n-qubit pure states.



rate research

Read More

Non-trivial facet inequalities play important role in detecting and quantifying the nonolocality of a state -- specially a pure state. Such inequalities are expected to be tight. Number of such inequalities depends on the Bell test scenario. With the increase in the number of parties, dimensionality of the Hilbert space, or/and the number of measurements, there are more nontrivial facet inequalities. By considering a specific measurement scenario, we find that for any multipartite qubit state, local polytope can have only one nontrivial facet. Therefore there exist a possibility that only one Bell inequality, and its permutations, would be able to detect the nonlocality of a pure state. The scenario involves two dichotomic measurement settings for two parties and one dichotomic measurement by other parties. This measurement scenario for a multipartite state may be considered as minimal scenario involving multipartite correlations that can detect nonlocality. We present detailed results for three-qubit states.
A systematic approach is presented to construct non-homogeneous two- and three-qubit Bell-type inequalities. When projector-like terms are subtracted from homogeneous two-qubit CHSH polynomial, non-homogeneous inequalities are attained and the maximal quantum mechanical violation asymptotically equals a constant with the subtracted terms becoming sufficiently large. In the case of three-qubit system, it is found that most significant three-qubit inequalities presented in literature can be recovered in our framework. We aslo discuss the behavior of such inequalities in the loophole-free Bell test and obtain corresponding thresholds of detection efficiency.
For any finite number of parts, measurements and outcomes in a Bell scenario we estimate the probability of random $N$-qu$d$it pure states to substantially violate any Bell inequality with uniformly bounded coefficients. We prove that under some conditions on the local dimension the probability to find any significant amount of violation goes to zero exponentially fast as the number of parts goes to infinity. In addition, we also prove that if the number of parts is at least 3, this probability also goes to zero as the the local Hilbert space dimension goes to infinity.
Bell inequalities constitute a key tool in quantum information theory: they not only allow one to reveal nonlocality in composite quantum systems, but, more importantly, they can be used to certify relevant properties thereof. We provide a very simple and intuitive construction of Bell inequalities that are maximally violated by the multiqubit graph states and can be used for their robust self-testing. The main advantage of our inequalities over previous constructions for these states lies in the fact that the number of correlations they contain scales only linearly with the number of observers, which presents a significant reduction of the experimental effort needed to violate them. We also discuss possible generalizations of our approach by showing that it is applicable to entangled states whose stabilizers are not simply tensor products of Pauli matrices.
135 - Gokhan Torun , Ali Yildiz 2019
The states of three-qubit systems split into two inequivalent types of genuine tripartite entanglement, namely the Greenberger-Horne-Zeilinger (GHZ) type and the $W$ type. A state belonging to one of these classes can be stochastically transformed only into a state within the same class by local operations and classical communications. We provide local quantum operations, consisting of the most general two-outcome measurement operators, for the deterministic transformations of three-qubit pure states in which the initial and the target states are in the same class. We explore these transformations, originally having standard GHZ and standard $W$ states, under the local measurement operations carried out by a single party and $p$ ($p=2,3$) parties (successively). We find a notable result that the standard GHZ state cannot be deterministically transformed to a GHZ-type state in which all its bipartite entanglements are nonzero, i.e., a transformation can be achieved with unit probability when the target state has at least one vanishing bipartite concurrence.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا