Do you want to publish a course? Click here

Inequality relation between entanglement and Bell nonlocality for arbitrary two-qubit states

90   0   0.0 ( 0 )
 Added by Xiao Gang Fan
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Entanglement and Bell nonlocality are used to describe quantum inseparabilities. Bell-nonlocal states form a strict subset of entangled states. A natural question arises concerning how much territory Bell nonlocality occupies entanglement for a general two-qubit entangled state. In this work, we investigate the relation between entanglement and Bell nonlocality by using lots of randomly generated two-qubit states, and give out a constraint inequality relation between the two quantum resources. For studying the upper or lower boundary of the inequality relation, we discover maximally (minimally) nonlocal entangled states, which maximize (minimize) the value of the Bell nonlocality for a given value of the entanglement. Futhermore, we consider a special kind of mixed state transformed by performing an arbitrary unitary operation on werner state. It is found that the special mixed states entanglement and Bell nonlocality are related to ones of a pure state transformed by the unitary operation performed on the Bell state.



rate research

Read More

Entanglement and steering are used to describe quantum inseparabilities. Steerable states form a strict subset of entangled states. A natural question arises concerning how much territory steerability occupies entanglement for a general two-qubit entangled state. In this work, we investigate the constraint relation between steerability and concurrence by using two kinds of evolutionary states and randomly generated two-qubit states. By combining the theoretical and numerical proofs, we obtain the upper and lower boundaries of steerability. And the lower boundary can be used as a sufficient criterion for steering detection. Futhermore, we consider a special kind of mixed state transformed by performing an arbitrary unitary operation on Werner-like state, and propose a sufficient steering criterion described by concurrence and purity.
140 - Z.Y. Sun , Y.Y. Wu , H.L. Huang 2013
In this paper, we use Bell inequality and nonlocality to study the bipartite correlation in an exactly soluble two-dimensional mixed spin system. Bell inequality turns out to be a valuable detector for phase transitions in this model. It can detect not only the quantum phase transition, but also the thermal phase transitions, of the system. The property of bipartite correlation in the system is also analyzed. In the quantum anti-ferromagnetic phase, the Bell inequality is violated thus nonlocality is present. It is interesting that the nonlocality is enhanced by thermal fluctuation, and similar results have not been observed in anti-ferromagnetic phase. In the ferromagnetic phase, the quantum correlation turns out to be very novel, which cannot be captured by entanglement or nonlocality.
Entanglement is a critical resource used in many current quantum information schemes. As such entanglement has been extensively studied in two qubit systems and its entanglement nature has been exhibited by violations of the Bell inequality. Can the amount of violation of the Bell inequality be used to quantify the degree of entanglement. What do Bell inequalities indicate about the nature of entanglement?
The present work is motivated by the question as to what aspect of correlation entailed by the two-qubit state serves as the appropriate quantitative resource for steering. To this end, considering Bell-diagonal states, suitable measures of simultaneous correlations in two and three complementary (mutually unbiased) bases are identified as the relevant resources for quantum steering. Quantitative relations between appropriate measures of quantum steering and the corresponding measures of simultaneous correlations in complementary bases are demonstrated which ensure that for two qubit steerable Bell-diagonal states, higher value of simultaneous correlations in mutually unbiased bases necessarily implies higher degree of quantum steering, both for two and three setting steering scenarios.
Entanglement and coherence are two essential quantum resources for quantum information processing. A natural question arises of whether there are direct link between them. And by thinking about this question, we propose a new measure for quantum state that contains concurrence and is called intrinsic concurrence. Interestingly, we discover that the intrinsic concurrence is always complementary to coherence. Note that the intrinsic concurrence is related to the concurrence of a special pure state ensemble. In order to explain the trade-off relation more intuitively, we apply it in some composite systems composed by a single-qubit state coupling four typical noise channels with the aim at illustrating their mutual transformation relationship between their coherence and intrinsic concurrence. This unified trade-off relation will provide more flexibility in exploiting one resource to perform quantum tasks and also provide credible theoretical basis for the interconversion of the two important quantum resources.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا