No Arabic abstract
Bell inequalities constitute a key tool in quantum information theory: they not only allow one to reveal nonlocality in composite quantum systems, but, more importantly, they can be used to certify relevant properties thereof. We provide a very simple and intuitive construction of Bell inequalities that are maximally violated by the multiqubit graph states and can be used for their robust self-testing. The main advantage of our inequalities over previous constructions for these states lies in the fact that the number of correlations they contain scales only linearly with the number of observers, which presents a significant reduction of the experimental effort needed to violate them. We also discuss possible generalizations of our approach by showing that it is applicable to entangled states whose stabilizers are not simply tensor products of Pauli matrices.
It is well-known that observing nonlocal correlations allows us to draw conclusions about the quantum systems under consideration. In some cases this yields a characterisation which is essentially complete, a phenomenon known as self-testing. Self-testing becomes particularly interesting if we can make the statement robust, so that it can be applied to a real experimental setup. For the simplest self-testing scenarios the most robust bounds come from the method based on operator inequalities. In this work we elaborate on this idea and apply it to the family of tilted CHSH inequalities. These inequalities are maximally violated by partially entangled two-qubit states and our goal is to estimate the quality of the state based only on the observed violation. For these inequalities we have reached a candidate bound and while we have not been able to prove it analytically, we have gathered convincing numerical evidence that it holds. Our final contribution is a proof that in the usual formulation, the CHSH inequality only becomes a self-test when the violation exceeds a certain threshold. This shows that self-testing scenarios fall into two distinct classes depending on whether they exhibit such a threshold or not.
We introduce a set of Bell inequalities for a three-qubit system. Each inequality within this set is violated by all generalized GHZ states. More entangled a generalized GHZ state is, more will be the violation. This establishes a relation between nonlocality and entanglement for this class of states. Certain inequalities within this set are violated by pure biseparable states. We also provide numerical evidence that at least one of these Bell inequalities is violated by a pure genuinely entangled state. These Bell inequalities can distinguish between separable, biseparable and genuinely entangled pure three-qubit states. We also generalize this set to n-qubit systems and may be suitable to characterize the entanglement of n-qubit pure states.
Non-trivial facet inequalities play important role in detecting and quantifying the nonolocality of a state -- specially a pure state. Such inequalities are expected to be tight. Number of such inequalities depends on the Bell test scenario. With the increase in the number of parties, dimensionality of the Hilbert space, or/and the number of measurements, there are more nontrivial facet inequalities. By considering a specific measurement scenario, we find that for any multipartite qubit state, local polytope can have only one nontrivial facet. Therefore there exist a possibility that only one Bell inequality, and its permutations, would be able to detect the nonlocality of a pure state. The scenario involves two dichotomic measurement settings for two parties and one dichotomic measurement by other parties. This measurement scenario for a multipartite state may be considered as minimal scenario involving multipartite correlations that can detect nonlocality. We present detailed results for three-qubit states.
We investigate the Bell inequalities derived from the graph states with violations detectable even with the presence of noises, which generalizes the idea of error-correcting Bell inequalities [Phys. Rev. Lett. 101, 080501 (2008)]. Firstly we construct a family of valid Bell inequalities tolerating arbitrary $t$-qubit errors involving $3(t+1)$ qubits, e.g., 6 qubits suffice to tolerate single qubit errors. Secondly we construct also a single-error-tolerating Bell inequality with a violation that increases exponentially with the number of qubits. Exhaustive computer search for optimal error-tolerating Bell inequalities based on graph states on no more than 10 qubits shows that our constructions are optimal for single- and double-error tolerance.
A systematic approach is presented to construct non-homogeneous two- and three-qubit Bell-type inequalities. When projector-like terms are subtracted from homogeneous two-qubit CHSH polynomial, non-homogeneous inequalities are attained and the maximal quantum mechanical violation asymptotically equals a constant with the subtracted terms becoming sufficiently large. In the case of three-qubit system, it is found that most significant three-qubit inequalities presented in literature can be recovered in our framework. We aslo discuss the behavior of such inequalities in the loophole-free Bell test and obtain corresponding thresholds of detection efficiency.