No Arabic abstract
We construct a simple algorithm to generate any CHSH type Bell inequality involving a party with two local binary measurements from two CHSH type inequalities without this party. The algorithm readily generalizes to situations, where the additional observer uses three measurement settings. There, each inequality involving the additional party is constructed from three inequalities with this party excluded. With this generalization at hand, we construct and analyze new symmetric inequalities for four observers and three experimental settings per observer.
We give the complete list of 175 facet Bell inequalities for the case where Alice and Bob each choose their measurements from a set of four binary outcome measurements. For each inequality we compute the maximum quantum violation for qubits, the resistance to noise, and the minimal detection efficiency required for closing the detection loophole with maximally entangled qubit states, in the case where both detectors have the same efficiency (symmetric case).
A systematic approach is presented to construct non-homogeneous two- and three-qubit Bell-type inequalities. When projector-like terms are subtracted from homogeneous two-qubit CHSH polynomial, non-homogeneous inequalities are attained and the maximal quantum mechanical violation asymptotically equals a constant with the subtracted terms becoming sufficiently large. In the case of three-qubit system, it is found that most significant three-qubit inequalities presented in literature can be recovered in our framework. We aslo discuss the behavior of such inequalities in the loophole-free Bell test and obtain corresponding thresholds of detection efficiency.
Bell inequalities are natural tools that allow one to certify the presence of nonlocality in quantum systems. The known constructions of multipartite Bell inequalities contain, however, correlation functions involving all observers, making their experimental implementation difficult. The main purpose of this work is to explore the possibility of witnessing nonlocality in multipartite quantum states from the easiest-to-measure quantities, that is, the two-body correlations. In particular, we determine all three and four-partite Bell inequalities constructed from one and two-body expectation values that obey translational symmetry, and show that they reveal nonlocality in multipartite states. Also, by providing a particular example of a five-partite Bell inequality, we show that nonlocality can be detected from two-body correlators involving only nearest neighbours. Finally, we demonstrate that any translationally invariant Bell inequality can be maximally violated by a translationally invariant state and the same set of observables at all sites. We provide a numerical algorithm allowing one to seek for maximal violation of a translationally invariant Bell inequality.
Steering, a quantum property stronger than entanglement but weaker than non-locality in the quantum correlation hierarchy, is a key resource for one-sided device-independent quantum key distribution applications, in which only one of the communicating parties is trusted. A fine-grained steering inequality was introduced in [PRA 90 050305(R) (2014)], enabling for the first time the detection of steering in all steerable two-qubit Werner states using only two measurement settings. Here we numerically and experimentally investigate this inequality for generalized Werner states and successfully detect steerability in a wide range of two-photon polarization-entangled Bell local states generated by a parametric down-conversion source.
In this article, we analyse the relationship between the Bell violation and the secure key rate of entanglement assisted quantum key distribution (QKD) protocols. Specifically, we address the question whether Bell violation is necessary or sufficient for secure communication. We construct a class of states which do not show Bell violation, however, which can be used for secure communication after local filtering. Similarly, we identify another class of states which show Bell violation but can not be used for generating secure key even after local filtering. The existence of these two classes of states demonstrates that Bell violation as an initial resource is neither necessary nor sufficient for QKD. Our work therefore forces a departure from traditional thinking that the degree of Bell violation is a key resource for quantum communication and brings out the role of local filtering.