Do you want to publish a course? Click here

Dynamical mass generation in QED with magnetic fields: arbitrary field strength and coupling constant

367   0   0.0 ( 0 )
 Added by Alejandro Ayala
 Publication date 2008
  fields
and research's language is English
 Authors Eduardo Rojas




Ask ChatGPT about the research

We study the dynamical generation of masses for fundamental fermions in quenched quantum electrodynamics, in the presence of magnetic fields of arbitrary strength, by solving the Schwinger-Dyson equation (SDE) for the fermion self-energy in the rainbow approximation. We employ the Ritus eigenfunction formalism which provides a neat solution to the technical problem of summing over all Landau levels. It is well known that magnetic fields catalyze the generation of fermion mass m for arbitrarily small values of electromagnetic coupling alpha. For intense fields it is also well known that m propto sqrt eB. Our approach allows us to span all regimes of parameters alpha and eB. We find that m propto sqrt eB provided alpha is small. However, when alpha increases beyond the critical value alpha_c which marks the onslaught of dynamical fermion masses in vacuum, we find m propto Lambda, the cut-off required to regularize the ultraviolet divergences. Our method permits us to verify the results available in literature for the limiting cases of eB and alpha. We also point out the relevance of our work for possible physical applications.



rate research

Read More

152 - Taichi Itoh , Hiroshi Kato 1998
We study dynamical symmetry breaking in three-dimensional QED with a Chern-Simons (CS) term, considering the screening effect of $N$ flavor fermions. We find a new phase of the vacuum, in which both the fermion mass and a magnetic field are dynamically generated, when the coefficient of the CS term $kappa$ equals $N e^2/4 pi$. The resultant vacuum becomes the finite-density state half-filled by fermions. For $kappa=N e^2/2 pi$, we find the fermion remains massless and only the magnetic field is induced. For $kappa=0$, spontaneous magnetization does not occur and should be regarded as an external field.
We revisit the calculation of the fermion self-energy in QED in the presence of a magnetic field. We show that, after carrying out the renormalization procedure and identifying the most general perturbative tensor structure for the modified fermion {mass operator} in the large field limit, the mass develops an imaginary part. This happens when account is made of the sub-leading contributions associated to Landau levels other than the lowest one. The imaginary part is associated to a spectral density describing the spread of the mass function in momentum. The center of the distribution corresponds to the magnetic-field modified mass. The width becomes small as the field intensity increases in such a way that for asymptotically large values of the field, when the separation between Landau levels becomes also large, the mass function describes a stable particle occupying only the lowest Landau level. For large but finite values of the magnetic field, the spectral density represents a finite probability for the fermion to occupy Landau levels other than the LLL.
We report here a preliminary value for the piNN coupling constant deduced from the GMO sumrule for forward piN scattering. As in our previous determination from np backward differential scattering cross sections we give a critical discussion of the analysis with careful attention not only to the statistical, but also to the systematic uncertainties. Our preliminary evaluation gives $g^2_c$(GMO) = 13.99(24).
Extensive investigations show that QED$_{3}$ exhibits dynamical fermion mass generation at zero temperature when the fermion flavor $N$ is sufficiently small. However, it seems difficult to extend the theoretical analysis to finite temperature. We study this problem by means of Dyson-Schwinger equation approach after considering the effect of finite temperature or disorder-induced fermion damping. Under the widely used instantaneous approximation, the dynamical mass displays an infrared divergence in both cases. We then adopt a new approximation that includes an energy-dependent gauge boson propagator and obtain results for dynamical fermion mass that do not contain infrared divergence. The validity of the new approximation is examined by comparing to the well-established results obtained at zero temperature.
We find dispersion laws for the photon propagating in the presence of mutually orthogonal constant external electric and magnetic fields in the context of the $theta $-expanded noncommutative QED. We show that there is no birefringence to the first order in the noncommutativity parameter $% theta .$ By analyzing the group velocities of the photon eigenmodes we show that there occurs superluminal propagation for any direction. This phenomenon depends on the mutual orientation of the external electromagnetic fields and the noncommutativity vector. We argue that the propagation of signals with superluminal group velocity violates causality in spite of the fact that the noncommutative theory is not Lorentz-invariant and speculate about possible workarounds.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا