No Arabic abstract
We study dynamical symmetry breaking in three-dimensional QED with a Chern-Simons (CS) term, considering the screening effect of $N$ flavor fermions. We find a new phase of the vacuum, in which both the fermion mass and a magnetic field are dynamically generated, when the coefficient of the CS term $kappa$ equals $N e^2/4 pi$. The resultant vacuum becomes the finite-density state half-filled by fermions. For $kappa=N e^2/2 pi$, we find the fermion remains massless and only the magnetic field is induced. For $kappa=0$, spontaneous magnetization does not occur and should be regarded as an external field.
Introducing a chemical potential in the functional method, we construct the effective action of QED$_3$ with a Chern-Simons term. We examine a possibility that charge condensation $langlepsi^daggerpsi rangle$ remains nonzero at the limit of the zero chemical potential. If it happens, spontaneous magnetization occurs due to the Gauss law constraint which connects the charge condensation to the background magnetic field. It is found that the stable vacuum with nonzero charge condensation is realized only when fermion masses are sent to zero, keeping it lower than the chemical potential. This result suggests that the spontaneous magnetization is closely related to the fermion mass.
In (2+1)-dimensional QED with a Chern-Simons term, we show that spontaneous magnetization occurs in the context of finite density vacua, which are the lowest Landau levels fully or half occupied by fermions. Charge condensation is shown to appear so as to complement the fermion anti-fermion condensate, which breaks the flavor U(2N) symmetry and causes fermion mass generation. The solutions to the Schwinger-Dyson gap equation show that the fermion self-energy contributes to the induction of a finite fermion density and/or fermion mass. The magnetization can be supported by charge condensation for theories with the Chern-Simons coefficient $kappa=N e^2/2 pi$, and $kappa=N e^2/4 pi$, under the Gauss law constraint. For $kappa=N e^2/4 pi$, both the magnetic field and the fermion mass are simultaneously generated in the half-filled ground state, which breaks the U(2N) symmetry as well as the Lorentz symmetry.
We study large $N$ 2+1 dimensional fermions in the fundamental representation of an $SU(N)_k$ Chern Simons gauge group in the presence of a uniform background magnetic field for the $U(1)$ global symmetry of this theory. The magnetic field modifies the Schwinger Dyson equation for the propagator in an interesting way; the product between the self energy and the Greens function is replaced by a Moyal star product. Employing a basis of functions previously used in the study of non-commutative solitons, we are able to exactly solve the Schwinger Dyson equation and so determine the fermion propagator. The propagator has a series of poles (and no other singularities) whose locations yield a spectrum of single particle energies at arbitrary t Hooft coupling and chemical potential. The usual free fermion Landau levels spectrum is shifted and broadened out; we compute the shifts and widths of these levels at arbitrary tHooft coupling. As a check on our results we independently solve for the propagators of the conjecturally dual theory of Chern Simons gauged large $N$ fundamental Wilson Fisher bosons also in a background magnetic field but this time only at zero chemical potential. The spectrum of single particle states of the bosonic theory precisely agrees with those of the fermionic theory under Bose-Fermi duality.
Extensive investigations show that QED$_{3}$ exhibits dynamical fermion mass generation at zero temperature when the fermion flavor $N$ is sufficiently small. However, it seems difficult to extend the theoretical analysis to finite temperature. We study this problem by means of Dyson-Schwinger equation approach after considering the effect of finite temperature or disorder-induced fermion damping. Under the widely used instantaneous approximation, the dynamical mass displays an infrared divergence in both cases. We then adopt a new approximation that includes an energy-dependent gauge boson propagator and obtain results for dynamical fermion mass that do not contain infrared divergence. The validity of the new approximation is examined by comparing to the well-established results obtained at zero temperature.
The issue intensively claimed in the literature on the generation of a CPT-odd and Lorentz violating Chern-Simons-like term by radiative corrections owing to a CPT violating interaction -- the axial coupling of fermions with a constant vector field $b_m$ -- is mistaken. The presence of massless gauge field triggers IR divergences that might show up from the UV subtractions, therefore, so as to deal with the (actual physical) IR divergences, the Lowenstein-Zimmermann subtraction scheme, in the framework of BPHZL renormalization method, has to be adopted. The proof on the non generation of such a Chern-Simons-like term is done, independent of any kind of regularization scheme, at all orders in perturbation theory.