Do you want to publish a course? Click here

Infrared behavior of dynamical fermion mass generation in QED$_{3}$

142   0   0.0 ( 0 )
 Added by Guo-Zhu Liu
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Extensive investigations show that QED$_{3}$ exhibits dynamical fermion mass generation at zero temperature when the fermion flavor $N$ is sufficiently small. However, it seems difficult to extend the theoretical analysis to finite temperature. We study this problem by means of Dyson-Schwinger equation approach after considering the effect of finite temperature or disorder-induced fermion damping. Under the widely used instantaneous approximation, the dynamical mass displays an infrared divergence in both cases. We then adopt a new approximation that includes an energy-dependent gauge boson propagator and obtain results for dynamical fermion mass that do not contain infrared divergence. The validity of the new approximation is examined by comparing to the well-established results obtained at zero temperature.



rate research

Read More

152 - Taichi Itoh , Hiroshi Kato 1998
We study dynamical symmetry breaking in three-dimensional QED with a Chern-Simons (CS) term, considering the screening effect of $N$ flavor fermions. We find a new phase of the vacuum, in which both the fermion mass and a magnetic field are dynamically generated, when the coefficient of the CS term $kappa$ equals $N e^2/4 pi$. The resultant vacuum becomes the finite-density state half-filled by fermions. For $kappa=N e^2/2 pi$, we find the fermion remains massless and only the magnetic field is induced. For $kappa=0$, spontaneous magnetization does not occur and should be regarded as an external field.
We study the behavior of the dynamical fermion mass when infrared divergences and mass shell singularities are present in a gauge theory. In particular, in the massive Schwinger model in covariant gauges we find that the pole of the fermion propagator is divergent and gauge dependent at one loop, but the leading singularities cancel in the quenched rainbow approximation. On the other hand, in physical gauges, we find that the dynamical fermion mass is finite and gauge independent at least up to one loop.
126 - J.A. Gracey 2018
We use the critical point large $N$ formalism to calculate the critical exponents corresponding to the fermion mass operator and flavour non-singlet fermion bilinear operator in the universality class of Quantum Electrodynamics (QED) coupled to the Gross-Neveu model for an $SU(N)$ flavour symmetry in $d$-dimensions. The $epsilon$ expansion of the exponents in $d$ $=$ $4$ $-$ $2epsilon$ dimensions are in agreement with recent three and four loop perturbative evaluations of both renormalization group functions of these operators. Estimates of the value of the non-singlet operator exponent in three dimensions are provided.
464 - E. Shintani , T. Onogi 2012
We propose a novel approach to the Graphene system using a local field theory of 4 dimensional QED model coupled to 2+1 dimensional Dirac fermions, whose velocity is much smaller than the speed of light. Performing hybrid Monte Carlo simulations of this model on the lattice, we compute the chiral condensate and its susceptibility with different coupling constant, velocity parameter and flavor number. We find that the chiral symmetry is dynamically broken in the small velocity regime and obtain a qualitatively consistent behavior with the prediction from Schwinger-Dyson equations.
106 - David Tong 2021
Symmetric mass generation is the name given to a mechanism for gapping fermions while preserving a chiral, but necessarily non-anomalous, symmetry. In this paper we describe how symmetric mass generation for continuous symmetries can be achieved using gauge dynamics in two and four dimensions. Various strong coupling effects are invoked, including known properties of supersymmetric gauge theories, specifically the phenomenon of s-confinement, and conjectured properties of non-supersymmetric chiral gauge theories.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا