No Arabic abstract
Given a conditionally completely positive map $mathcal L$ on a unital $ast$-algebra $A$, we find an interesting connection between the second Hochschild cohomology of $A$ with coefficients in the bimodule $E_{mathcal L}=B^a(A oplus M)$ of adjointable maps, where $M$ is the GNS bimodule of $mathcal L$, and the possibility of constructing a quantum random walk (in the sense of cite{AP,LP,L,KBS}) corresponding to $mathcal L$.
Using coordinate-free basic operators on toy Fock spaces cite{AP}, quantum random walks are defined following the ideas in cite{LP,AP}. Strong convergence of quantum random walks associated with bounded structure maps is proved under suitable assumptions, extendings the result obtained in cite{KBS} in case of one dimensional noise. To handle infinite dimensional noise we have used the coordinate-free language of quantum stochastic calculus developed in cite{GS1}.
The notion of strong 1-boundedness for finite von Neumann algebras was introduced by Jung. This framework provided a free probabilistic approach to study rigidity properties and classification of finite von Neumann algebras. In this paper, we prove that tracial von Neumann algebras with a finite Kazhdan set are strongly 1-bounded. This includes all Property (T) von Neumann algebras with finite dimensional center and group von Neumann algebras of Property (T) groups. This result generalizes all the previous results in this direction due to Voiculescu, Ge, Ge-Shen, Connes-Shlyakhtenko, Jung-Shlyakhtenko, Jung, and Shlyakhtenko. We also give a new proof of a result of Shlyakhtenko which states that if $G$ is a sofic, finitely presented group with vanishing first $ell^2$-Betti number, then $L(G)$ is strongly 1-bounded. Our proofs are based on analysis of covering estimates of microstate spaces using an iteration technique in the spirit of Jung.
Quantum Drinfeld Hecke algebras are generalizations of Drinfeld Hecke algebras in which polynomial rings are replaced by quantum polynomial rings. We identify these algebras as deformations of skew group algebras, giving an explicit connection to Hochschild cohomology. We compute the relevant part of Hochschild cohomology for actions of many reflection groups and we exploit computations from our paper with Shroff for diagonal actions. By combining our work with recent results of Levandovskyy and Shepler, we produce examples of quantum Drinfeld Hecke algebras. These algebras generalize the braided Cherednik algebras of Bazlov and Berenstein.
In this paper we construct a graded Lie algebra on the space of cochains on a $mathbbZ_2$-graded vector space that are skew-symmetric in the odd variables. The Lie bracket is obtained from the classical Gerstenhaber bracket by (partial) skew-symmetrization; the coboundary operator is a skew-symmetrized version of the Hochschild differential. We show that an order-one element $m$ satisfying the zero-square condition $[m,m]=0$ defines an algebraic structure called Lie antialgebra. The cohomology (and deformation) theory of these algebras is then defined. We present two examples of non-trivial cohomology classes which are similar to the celebrated Gelfand-Fuchs and Godbillon-Vey classes.
We study quotients of the Toeplitz C*-algebra of a random walk, similar to those studied by the author and Markiewicz for finite stochastic matrices. We introduce a new Cuntz-type quotient C*-algebra for random walks that have convergent ratios of transition probabilities. These C*-algebras give rise to new notions of ratio limit space and boundary for such random walks, which are computed by appealing to a companion paper by Woess. Our combined results are leveraged to identify a unique symmetry-equivariant quotient C*-algebra for any symmetric random walk on a hyperbolic group, shedding light on a question of Viselter on C*-algebras of subproduct systems.