Do you want to publish a course? Click here

Toeplitz quotient C*-algebras and ratio limits for random walks

245   0   0.0 ( 0 )
 Added by Adam Dor-On
 Publication date 2021
  fields
and research's language is English
 Authors Adam Dor-On




Ask ChatGPT about the research

We study quotients of the Toeplitz C*-algebra of a random walk, similar to those studied by the author and Markiewicz for finite stochastic matrices. We introduce a new Cuntz-type quotient C*-algebra for random walks that have convergent ratios of transition probabilities. These C*-algebras give rise to new notions of ratio limit space and boundary for such random walks, which are computed by appealing to a companion paper by Woess. Our combined results are leveraged to identify a unique symmetry-equivariant quotient C*-algebra for any symmetric random walk on a hyperbolic group, shedding light on a question of Viselter on C*-algebras of subproduct systems.



rate research

Read More

We study two classes of operator algebras associated with a unital subsemigroup $P$ of a discrete group $G$: one related to universal structures, and one related to co-universal structures. First we provide connections between universal C*-algebras that arise variously from isometric representations of $P$ that reflect the space $mathcal{J}$ of constructible right ideals, from associated Fell bundles, and from induced partial actions. This includes connections of appropriate quotients with the strong covariance relations in the sense of Sehnem. We then pass to the reduced representation $mathrm{C}^*_lambda(P)$ and we consider the boundary quotient $partial mathrm{C}^*_lambda(P)$ related to the minimal boundary space. We show that $partial mathrm{C}^*_lambda(P)$ is co-universal in two different classes: (a) with respect to the equivariant constructible isometric representations of $P$; and (b) with respect to the equivariant C*-covers of the reduced nonselfadjoint semigroup algebra $mathcal{A}(P)$. If $P$ is an Ore semigroup, or if $G$ acts topologically freely on the minimal boundary space, then $partial mathrm{C}^*_lambda(P)$ coincides with the usual C*-envelope $mathrm{C}^*_{text{env}}(mathcal{A}(P))$ in the sense of Arveson. This covers total orders, finite type and right-angled Artin monoids, the Thompson monoid, multiplicative semigroups of nonzero algebraic integers, and the $ax+b$-semigroups over integral domains that are not a field. In particular, we show that $P$ is an Ore semigroup if and only if there exists a canonical $*$-isomorphism from $partial mathrm{C}^*_lambda(P)$, or from $mathrm{C}^*_{text{env}}(mathcal{A}(P))$, onto $mathrm{C}^*_lambda(G)$. If any of the above holds, then $mathcal{A}(P)$ is shown to be hyperrigid.
I. Raeburn and J. Taylor have constructed continuous-trace C*-algebras with a prescribed Dixmier-Douady class, which also depend on the choice of an open cover of the spectrum. We study the asymptotic behavior of these algebras with respect to certain refinements of the cover and appropriate extension of cocycles. This leads to the analysis of a limit groupoid G and a cocycle sigma, and the algebra C*(G, sigma) may be regarded as a generalized direct limit of the Raeburn-Taylor algebras. As a special case, all UHF C*-algebras arise from this limit construction.
288 - Huaxin Lin 2008
We consider unital simple inductive limits of generalized dimension drop C*-algebras They are so-called ASH-algebras and include all unital simple AH-algebras and all dimension drop $C^*$-algebras. Suppose that $A$ is one of these C*-algebras. We show that $Aotimes Q$ has tracial rank no more than one, where $Q$ is the rational UHF-algebra. As a consequence, we obtain the following classification result: Let $A$ and $B$ be two unital simple inductive limits of generalized dimension drop algebras with no dimension growth. Then $Acong B$ if and only if they have the same Elliott invariant.
A cosystem consists of a possibly nonselfadoint operator algebra equipped with a coaction by a discrete group. We introduce the concept of C*-envelope for a cosystem; roughly speaking, this is the smallest C*-algebraic cosystem that contains an equivariant completely isometric copy of the original one. We show that the C*-envelope for a cosystem always exists and we explain how it relates to the usual C*-envelope. We then show that for compactly aligned product systems over group-embeddable right LCM semigroups, the C*-envelope is co-universal, in the sense of Carlsen, Larsen, Sims and Vittadello, for the Fock tensor algebra equipped with its natural coaction. This yields the existence of a co-universal C*-algebra, generalizing previous results of Carlsen, Larsen, Sims and Vittadello, and of Dor-On and Katsoulis. We also realize the C*-envelope of the tensor algebra as the reduced cross sectional algebra of a Fell bundle introduced by Sehnem, which, under a mild assumption of normality, we then identify to the quotient of the Fock algebra by the image of Sehnems strong covariance ideal. In another application, we obtain a reduced Hao-Ng isomorphism theorem for the co-universal algebras.
92 - Lingaraj Sahu 2005
Using coordinate-free basic operators on toy Fock spaces cite{AP}, quantum random walks are defined following the ideas in cite{LP,AP}. Strong convergence of quantum random walks associated with bounded structure maps is proved under suitable assumptions, extendings the result obtained in cite{KBS} in case of one dimensional noise. To handle infinite dimensional noise we have used the coordinate-free language of quantum stochastic calculus developed in cite{GS1}.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا