Do you want to publish a course? Click here

Hochschild cohomology and quantum Drinfeld Hecke algebras

340   0   0.0 ( 0 )
 Added by Deepak Naidu
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

Quantum Drinfeld Hecke algebras are generalizations of Drinfeld Hecke algebras in which polynomial rings are replaced by quantum polynomial rings. We identify these algebras as deformations of skew group algebras, giving an explicit connection to Hochschild cohomology. We compute the relevant part of Hochschild cohomology for actions of many reflection groups and we exploit computations from our paper with Shroff for diagonal actions. By combining our work with recent results of Levandovskyy and Shepler, we produce examples of quantum Drinfeld Hecke algebras. These algebras generalize the braided Cherednik algebras of Bazlov and Berenstein.



rate research

Read More

148 - Deepak Naidu 2012
We generalize quantum Drinfeld Hecke algebras by incorporating a 2-cocycle on the associated finite group. We identify these algebras as specializations of deformations of twisted skew group algebras, giving an explicit connection to Hochschild cohomology. We classify these algebras for diagonal actions, as well as for the symmetric groups with their natural representations. Our results show that the parameter spaces for the symmetric groups in the twisted setting is smaller than in the untwisted setting.
Quantum symmetric algebras (or noncommutative polynomial rings) arise in many places in mathematics. In this article we find the multiplicative structure of their Hochschild cohomology when the coefficients are in an arbitrary bimodule algebra. When this bimodule algebra is a finite group extension (under a diagonal action) of a quantum symmetric algebra, we give explicitly the graded vector space structure. This yields a complete description of the Hochschild cohomology ring of the corresponding skew group algebra.
470 - Apoorva Khare 2016
If A is a cocommutative algebra with coproduct, then so is the smash product algebra of a symmetric algebra Sym(V) with A, where V is an A-module. Such smash product algebras, with A a group ring or a Lie algebra, have families of deformations that have been studied widely in the literature; examples include symplectic reflection algebras and infinitesimal Hecke algebras. We introduce a family of deformations of these smash product algebras for general A, and characterize the PBW property. We then characterize the Jacobi identity for grouplike algebras (that include group rings and the nilCoxeter algebra), and precisely identify the PBW deformations in the example where A is the nilCoxeter algebra. We end with the more prominent case - where A is a Hopf algebra. We show the equivalence of sever
In this paper we construct a graded Lie algebra on the space of cochains on a $mathbbZ_2$-graded vector space that are skew-symmetric in the odd variables. The Lie bracket is obtained from the classical Gerstenhaber bracket by (partial) skew-symmetrization; the coboundary operator is a skew-symmetrized version of the Hochschild differential. We show that an order-one element $m$ satisfying the zero-square condition $[m,m]=0$ defines an algebraic structure called Lie antialgebra. The cohomology (and deformation) theory of these algebras is then defined. We present two examples of non-trivial cohomology classes which are similar to the celebrated Gelfand-Fuchs and Godbillon-Vey classes.
279 - Li Luo 2008
Xu introduced a family of root-tree-diagram nilpotent Lie algebras of differential operators, in connection with evolution partial differential equations. We generalized his notion to more general oriented tree diagrams. These algebras are natural analogues of the maximal nilpotent Lie subalgebras of finite-dimensional simple Lie algebras. In this paper, we use Hodge Laplacian to study the cohomology of these Lie algebras. The total rank conjecture and $b_2$-conjecture for the algebras are proved. Moreover, we find the generating functions of the Betti numbers by means of Young tableaux for the Lie algebras associated with certain tree diagrams of single branch point. By these functions and Euler-Poincare principle, we obtain analogues of the denominator identity for finite-dimensional simple Lie algebras. The result is a natural generalization of the Botts classical result in the case of special linear Lie algebras.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا