Do you want to publish a course? Click here

Employing a Parabolic Trough Solar Power Plant with a Sensible Thermal Energy Storage for Covering Electrical Peak Load in Palmyra

استخدام محطة طاقة شمسية ذات لاقط نوع قطع مكافئ مع تخزين حراري محسوس لتغطية حمولة الذروة الكهربائية لمنطقة تدمر

1965   2   49   0 ( 0 )
 Publication date 2012
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

This research shows the necessity of building the solar electric generating system to provide a clean renewable energy and to meet people's needs of electrical energy at Peak-Load to keep a clean environment in Palmyra region. This paper concluded a study of electric generating power plant with 30 MW capacity during day. A part of heat power collected in a solar field is stored in sensible thermal energy storage for covering Electrical Peak Load when the plant operates at night. This research showed the advantage of constructing the solar system with a Parabolic Trough in the solar field. The amount of heat collected during months of the year is high and the hours operating at daytime were great. The building of solar-electric plant is valid technically and economically. This research performed a design of solar field and its Parameters using Computer Program (Language C++) and calculated the most important plant performance during months of the year.

References used
John May ,"concentrated Solar Schemes", 48p . 2008
Price . H, "A Parabolic Trough Solar Power Plant Simulation Model", Sandia National Laboratories, National Renewable Energy Laboratory,USA,12p , 2003
A . A . M . SAYIGH , Solar Energy Engineering , Academic Press , New York San Francisco , London,1977
M. Becker , W. Geyer ," Solar Thermal Power Plants ", drafted version with status of may 03, 2000-20p
O. Ercan Ataer ,"Storage Of Thermal Energy ", Gazi university , mechanical engineering department , Ankara
Therminol VP-1 heat transfer fluid system. Therminol VP-1 heat transfer fluid, Performance features of Therminol VP-1 by SALUTIA. < http:// www. therminol. com. >
الأطلس الشمسي للقطر العربي السوري/2005-ص540/
William B. Stine and Michael Geyer, copyright © 2001 by William B. Stine and Michael Geyer, " Solar Energy System Design",218p
Frank Lippke, Simulation Of the Part-Load Behavoir of a 30MWe SEGS Plant,68p,1995.SANDIA National Laboratories, USA
ASHRAE , Handbook of Fundamentals , American Society of Heating, Refrigeration and Air Conditioning Engineers, Atlanta, W. S . A . 1981
H. Price ,"A Parabolic Trough Solar Power Plant Simulation Model", International solar Energy Conference Hawaii Island, Hawaii March 16–18, 2003 National Renewable Energy Laboratory
rate research

Read More

Solar radiation which reaches the earth surface in Palmyra city has high rates, so we introduce this research to study the operation of a solar electric power plant with parabolic trough solar collector type. Electric power plants are usually designe d to operate at nominal design power and flow rate, pressure, specific steam temperature. In this case the obtained efficiency is relatively high, but the real conditions in which the plant operates and supplies the electric grid, in addition to the climate variations during monthes and seasons, all lead to a deviation in power value from nominal value, so the plant operate at partial loads. We used the analytical method in this research to study the variation in power plant parameters as the steam turbine load changes. In other words, the study of main plant parameters variation due to variable partial loads. We calculated steam pressure variations through turbine stages and its effect on changing steam flow rate to the recovery water heaters. In addition, we calculated the amount of heat consumed through turbine unit, turbine unit efficiency, and the total efficiency of the power plant.
Researchers and scientists to ease due to electric power generation using fossil fuel plants with environmental pollution is seeking, in the discovery and improve the methods of generation using renewable energies. Floating solar chimney technolog y of the most promising technologies that can be used in power stations with solar chimney is considered. The research aims to give results on a proposal to determine the specifications for the plant of this kind in the climate of the city of Homs, for example, and the study of the behavior of this station and analyze the most important parameters affecting it. In this research study hydrothermal behavior floating solar chimney in the climate of the city of Homs by a program written in a language programming EES thermal power station.
Electric energy is very important for sustaining the good life on the planet's surface, especially since civilization has become associated with this type of energy. Solar photovoltaic (PV) is one of the most suitable applications for converting sunl ight into electrical energy. The appropriate use of solar energy is an important topic for reducing dependence on fossil energy sources that are used to generate electricity, and thus reducing the emissions of greenhouse gases on the planet's surface. Globally, because of environmental conditions, other methods of generating energy being searched for that are less harmful than traditional methods, which rely on a large percentage of them on generating stations that run on fossil fuels. This research discusses electrical power generation using solar energy cells and the effect of these cells on the Syrian electrical grid so that a study of a solar energy farm project provides the data required when working on implementing such a project, and these data are voltage control, load flow, total harmonic distortion coefficient levels. To implement such a project, the model must be designed and we chose the ETAP program for that.
In this paper, an analysis of the balance of power and Exergy hyphen to the station by solar radiation using thermal programming language EES, and solving inter equations of mathematical model is written for the station floating balances of the chimney in order to facilitate the analysis. We chose thermal EES programming language to write a program to solve mathematical equations governing the balance of power in this type of stations due to its flexibility in dealing with thermodynamic tables, and the possibility of solving linear equations, and many other features.
The drastically increase in energy demand and the problems resulted from environmental pollution have led to a serious trend towards energy utilization efficiency improvement through scientific researches related to renewable energies, particularit y that Syria has a high solar irradiance and prolonged sunshine hours. This research focuses on determining the thermal efficiency for a prototype of a parabolic trough solar concentrator (PTC) to obtain the optimal prototype thermally and economically according to climatic conditions in Damascus. It has been deposited the mathematical model of the studied concentrator depending on the calculated design parameters through calculating the solar angles equations and direct solar irradiance throughout the year. And it has been solved this model by using numerous computer programs (Excel, EES).

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا