Do you want to publish a course? Click here

Generative conversation systems tend to produce meaningless and generic responses, which significantly reduce the user experience. In order to generate informative and diverse responses, recent studies proposed to fuse knowledge to improve informativ eness and adopt latent variables to enhance the diversity. However, utilizing latent variables will lead to the inaccuracy of knowledge in the responses, and the dissemination of wrong knowledge will mislead the communicators. To address this problem, we propose a Syntactically Diverse Adversarial Network (SDAN) for knowledge-grounded conversation model. SDAN contains an adversarial hierarchical semantic network to keep the semantic coherence, a knowledge-aware network to attend more related knowledge for improving the informativeness and a syntactic latent variable network to generate syntactically diverse responses. Additionally, in order to increase the controllability of syntax, we adopt adversarial learning to decouple semantic and syntactic representations. Experimental results show that our model can not only generate syntactically diverse and knowledge-accurate responses but also significantly achieve the balance between improving the syntactic diversity and maintaining the knowledge accuracy.
This paper introduces a novel approach to learn visually grounded meaning representations of words as low-dimensional node embeddings on an underlying graph hierarchy. The lower level of the hierarchy models modality-specific word representations, co nditioned to another modality, through dedicated but communicating graphs, while the higher level puts these representations together on a single graph to learn a representation jointly from both modalities. The topology of each graph models similarity relations among words, and is estimated jointly with the graph embedding. The assumption underlying this model is that words sharing similar meaning correspond to communities in an underlying graph in a low-dimensional space. We named this model Hierarchical Multi-Modal Similarity Graph Embedding (HM-SGE). Experimental results validate the ability of HM-SGE to simulate human similarity judgments and concept categorization, outperforming the state of the art.
We propose a novel problem within end-to-end learning of task oriented dialogs (TOD), in which the dialog system mimics a troubleshooting agent who helps a user by diagnosing their problem (e.g., car not starting). Such dialogs are grounded in domain -specific flowcharts, which the agent is supposed to follow during the conversation. Our task exposes novel technical challenges for neural TOD, such as grounding an utterance to the flowchart without explicit annotation, referring to additional manual pages when user asks a clarification question, and ability to follow unseen flowcharts at test time. We release a dataset (FLODIAL) consisting of 2,738 dialogs grounded on 12 different troubleshooting flowcharts. We also design a neural model, FLONET, which uses a retrieval-augmented generation architecture to train the dialog agent. Our experiments find that FLONET can do zero-shot transfer to unseen flowcharts, and sets a strong baseline for future research.
Neural conversation models have shown great potentials towards generating fluent and informative responses by introducing external background knowledge. Nevertheless, it is laborious to construct such knowledge-grounded dialogues, and existing models usually perform poorly when transfer to new domains with limited training samples. Therefore, building a knowledge-grounded dialogue system under the low-resource setting is a still crucial issue. In this paper, we propose a novel three-stage learning framework based on weakly supervised learning which benefits from large scale ungrounded dialogues and unstructured knowledge base. To better cooperate with this framework, we devise a variant of Transformer with decoupled decoder which facilitates the disentangled learning of response generation and knowledge incorporation. Evaluation results on two benchmarks indicate that our approach can outperform other state-of-the-art methods with less training data, and even in zero-resource scenario, our approach still performs well.
We investigate ways to compose complex concepts in texts from primitive ones while grounding them in images. We propose Concept and Relation Graph (CRG), which builds on top of constituency analysis and consists of recursively combined concepts with predicate functions. Meanwhile, we propose a concept composition neural network called Composer to leverage the CRG for visually grounded concept learning. Specifically, we learn the grounding of both primitive and all composed concepts by aligning them to images and show that learning to compose leads to more robust grounding results, measured in text-to-image matching accuracy. Notably, our model can model grounded concepts forming at both the finer-grained sentence level and the coarser-grained intermediate level (or word-level). Composer leads to pronounced improvement in matching accuracy when the evaluation data has significant compound divergence from the training data.
Large-scale conversation models are turning to leveraging external knowledge to improve the factual accuracy in response generation. Considering the infeasibility to annotate the external knowledge for large-scale dialogue corpora, it is desirable to learn the knowledge selection and response generation in an unsupervised manner. In this paper, we propose PLATO-KAG (Knowledge-Augmented Generation), an unsupervised learning approach for end-to-end knowledge-grounded conversation modeling. For each dialogue context, the top-k relevant knowledge elements are selected and then employed in knowledge-grounded response generation. The two components of knowledge selection and response generation are optimized jointly and effectively under a balanced objective. Experimental results on two publicly available datasets validate the superiority of PLATO-KAG.
Knowledge-grounded dialogue generation has achieved promising performance with the engagement of external knowledge sources. Typical approaches towards this task usually perform relatively independent two sub-tasks, i.e., knowledge selection and know ledge-aware response generation. In this paper, in order to improve the diversity of both knowledge selection and knowledge-aware response generation, we propose a collaborative latent variable (CoLV) model to integrate these two aspects simultaneously in separate yet collaborative latent spaces, so as to capture the inherent correlation between knowledge selection and response generation. During generation, our proposed model firstly draws knowledge candidate from the latent space conditioned on the dialogue context, and then samples a response from another collaborative latent space conditioned on both the context and the selected knowledge. Experimental results on two widely-used knowledge-grounded dialogue datasets show that our model outperforms previous methods on both knowledge selection and response generation.
Knowledge Grounded Conversation Models are usually based on a selection/retrieval module and a generation module, trained separately or simultaneously, with or without having access to a gold' knowledge option. With the introduction of large pre-trai ned generative models, the selection and generation part have become more and more entangled, shifting the focus towards enhancing knowledge incorporation (from multiple sources) instead of trying to pick the best knowledge option. These approaches however depend on knowledge labels and/or a separate dense retriever for their best performance. In this work we study the unsupervised selection abilities of pre-trained generative models (e.g. BART) and show that by adding a score-and-aggregate module between encoder and decoder, they are capable of learning to pick the proper knowledge through minimising the language modelling loss (i.e. without having access to knowledge labels). Trained as such, our model - K-Mine - shows competitive selection and generation performance against models that benefit from knowledge labels and/or separate dense retriever.
We propose MultiDoc2Dial, a new task and dataset on modeling goal-oriented dialogues grounded in multiple documents. Most previous works treat document-grounded dialogue modeling as machine reading comprehension task based on a single given document or passage. In this work, we aim to address more realistic scenarios where a goal-oriented information-seeking conversation involves multiple topics, and hence is grounded on different documents. To facilitate such task, we introduce a new dataset that contains dialogues grounded in multiple documents from four different domains. We also explore modeling the dialogue-based and document-based contexts in the dataset. We present strong baseline approaches and various experimental results, aiming to support further research efforts on such a task.
In this paper, we define and evaluate a methodology for extracting history-dependent spatial questions from visual dialogues. We say that a question is history-dependent if it requires (parts of) its dialogue history to be interpreted. We argue that some kinds of visual questions define a context upon which a follow-up spatial question relies. We call the question that restricts the context: trigger, and we call the spatial question that requires the trigger question to be answered: zoomer. We automatically extract different trigger and zoomer pairs based on the visual property that the questions rely on (e.g. color, number). We manually annotate the automatically extracted trigger and zoomer pairs to verify which zoomers require their trigger. We implement a simple baseline architecture based on a SOTA multimodal encoder. Our results reveal that there is much room for improvement for answering history-dependent questions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا